DOI QR코드

DOI QR Code

On Approximation by Post-Widder and Stancu Operators Preserving x2

  • Received : 2007.06.19
  • Accepted : 2007.10.23
  • Published : 2009.03.31

Abstract

In the papers [5]-[7] was examined approximation of functions by the modified Sz$\'{a}$sz-Mrakyan operators and other positive linear operators preserving $e_2(x)=x^2$. In this paper we introduce the Post-Widder and Stancu operators preserving $x^2$ in polynomial weighted spaces. We show that these operators have better approximation properties than classical Post-Widder and Stancu operators.

Keywords

References

  1. Abel U., Asymptotic approximation with Stancu beta operators, Rev. Anal. Numer. Theor. Approx., 27(1)(1998), 5-13.
  2. Abel U., Gupta V., Rate of convergence for Stancu beta operators for functions of bounded variation, Rev. Anal. Numer. Theor. Approx., 33(1)(2004), 3-9.
  3. Becker M., Global approximation theorems for Szasz-Mirakyan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27(1)(1978), 127-142. https://doi.org/10.1512/iumj.1978.27.27011
  4. Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, New York, 1987.
  5. Duman O., Ozarslan M. A., Szasz-Mirakjan type operators providing a better error estimation, Applied Math. Letters, (in print). https://doi.org/10.1016/j.aml.2006.10.007
  6. Duman O., Ozarslan M. A., MKZ type operators providing a better estimation on [1/2, 1), Cand. Math. Bull., 50(2007), 434-439. https://doi.org/10.4153/CMB-2007-042-8
  7. King J. P., Positive linear operators which preservge $x^2$, Acta Math. Hungar., 99(2003), 203-208. https://doi.org/10.1023/A:1024571126455
  8. Rempulska L., Skorupka M., On strong approximation applied to Post-Widder operators, Anal. in Theory and Applic., 22(2)(2006), 172-182. https://doi.org/10.1007/BF03218710
  9. Rempulska L., Skorupka M., Approximation properties of modified Stancu beta operators, Rev. Anal. Numer. Theor. Approx., 35(2)(2006), (in print).
  10. Stancu D. D., On the beta approximating operators of second kind, Rev. Anal. Numer. Theor. Approx., 24(1-2)(1995), 231-239.

Cited by

  1. Convergence by modified Post-Widder operators pp.1579-1505, 2018, https://doi.org/10.1007/s13398-018-0562-4