On Sufficient Conditions for Certain Subclass of Analytic Functions Defined by Convolution

Paramasivam Sooriyakala*
Department of Mathematics, Jaya College of Arts and Science, Thiruninravur, 602 204, India
e-mail: marikkannan_1947@yahoo.co.in
Natarajan Marikkannan
Department of Mathematics, Government Arts College, Paramakudi 623 707, India
e-mail: natarajan.marikkannan@gmail.com
Abstract. In the present investigation sufficient conditions are found for certain subclass of normalized analytic functions defined by Hadamard product. Differential sandwich theorems are also obtained. As a special case of this we obtain results involving Ruscheweyh derivative, Sălăgean derivative, Carlson-shaffer operator, Dziok-Srivatsava linear operator, Multiplier transformation.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form

$$
\begin{equation*}
f(z):=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

For two functions $f(z)$ defined as in (1.1) and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ the Hadamard product or convolution of $f(z)$ and $g(z)$, denoted by $(f * g)(z)$, is defined by

$$
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

For $\alpha_{j} \in \mathbb{C},(j=1,2, \cdots, l)$ and $\beta_{j} \in \mathbb{C} \backslash\{0,-1,-2,-3, \cdots\},(j=1,2, \cdots, m)$, the Dziok-Srivatsava linear operator [7] for functions in \mathcal{A} is defined as follows:

$$
H^{l, m}\left(\alpha_{1}\right) f(z):=z+\sum_{n=2}^{\infty} \Gamma_{n} a_{n} z^{n}
$$

* Corresponding author.

Received 11 May 2007; accepted 17 March 2008.
2000 Mathematics Subject Classification: 30C45, 30C80.
Key words and phrases: analytic functions, univalent functions, Hadamard producut, differential subordinations, differential superordinations, Ruscheweyh derivative, Sălăgean derivative, Carlson-Shaffer operator, Dziok-Srivatsava linear operator, multiplier transformation.
where

$$
\begin{equation*}
\Gamma_{n}:=\frac{\left(\alpha_{1}\right)_{n-1} \cdots\left(\alpha_{l}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots\left(\beta_{m}\right)_{n-1}(1)_{n-1}} \tag{1.2}
\end{equation*}
$$

where $(\lambda)_{n}$ is the Pocchhammer symbol defined by

$$
(\lambda)_{n}:= \begin{cases}1 & (n=0) \\ \lambda(\lambda+1)(\lambda+2) \cdots(\lambda+n-1) & (n=1,2,3, \cdots) .\end{cases}
$$

On defining $g(z)=z+\sum_{n=2}^{\infty} \Gamma_{n} z^{n}$, we see that $(f * g)(z)=H^{l, m}\left(\alpha_{1}\right) f(z)$.
By taking $l=2, m=1, \alpha_{1}=a, \alpha_{2}=1$ and $\beta_{1}=c$ we see that

$$
(f * g)(z)=H^{2,1}(a) f(z)=L(a, c) f(z),
$$

where $L(a, c) f(z)$ denotes the Carlson-Shaffer linear operator [5].
On choosing $\frac{z}{(1-z)^{\lambda+1}}(\lambda>-1), z+\sum_{n=2}^{\infty} n^{m} a_{n} z^{n}$ and $z+\sum_{n=2}^{\infty}\left(\frac{n+\lambda}{1+\lambda}\right)^{m} z^{n}$ as $g(z)$, we find $(f * g)(z)$ as $D^{\lambda} f(z), \mathcal{D}^{m} f(z)$ and $I(r, \lambda) f(z)$ respectively, where $D^{\lambda}, \mathcal{D}^{m}$, and $I(m, \lambda)$ denotes Ruscheweyh derivative of order λ, Sălăgean derivative of order m and Multiplier transformation.

Let \mathcal{H} denotes the class of all analytic functions defined on the open unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisiting of functions of the form $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots$. For two analytic functions f and F, we say F is superordinate to f, if f is subordinate to F. Let $p, h \in \mathcal{H}$ and let $\phi(r, s, t ; z): \mathbb{C}^{3} \times \Delta \rightarrow \mathbb{C}$. If p and $\phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent and if p satisfies the second order superordination

$$
\begin{equation*}
h(z) \prec \phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right), \tag{1.3}
\end{equation*}
$$

then p is the solution of the differential superordination (1.3). An analytic function $q(z)$ is called subordinant, if $q(z) \prec p(z)$ for all $p(z)$ satisfying (1.3). A univalent subordinant $q(z)$ that satisfies $q(z) \prec q(z)$ for all subordinants $q(z)$ of (1.3), is said to be best subordinant. Recently Miller and Mocanu [3] considered certain first and second order differential superordinations. Using the results of Miller and Mocanu [3], Bulboacă have considered certain classes of first order differential superordinations [2] as well as superordination preserving integral operators [1].

In the present investigation we obtain the sufficient conditions for normalized analytic functions $f(z)$ to satisfy

$$
q_{1}(z) \prec \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \prec q_{2}(z),
$$

where $g(z)$ is the fixed analytic function in \mathcal{A}.

2. Preliminaries

For the present study we may need the following definitions and results.
Definition 2.1 ([3, Definition 2, p.817]) . Denote by \mathcal{Q}, the set of all functions $f(z)$ that are analytic and univalent in $\bar{\Delta} \backslash E(f)$, where

$$
E(f):=\left\{\zeta \in \partial \Delta: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \Delta \backslash E(f)$.
Theorem 2.1 (cf. Miller and Mocanu [4, Theorem 3.4h, p.132]) . Let $q(z)$ be univalent in Δ and θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(w) \neq$ 0 , when $w \in q(\Delta)$. Set $Q(z)=z q^{\prime}(z) \phi(q(z)), h(z)=\theta(q(z))+Q(z)$. Suppose that
(i) $Q(z)$ is starlike univalent in Δ and
(ii) $\Re\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0$ for $z \in \Delta$.

If p is analytic in Δ with $p(\Delta) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi\left((p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))\right. \tag{2.1}
\end{equation*}
$$

then

$$
p(z) \prec q(z)
$$

and $q(z)$ is the best dominant.
Theorem 2.2 ([2]). Let $q(z)$ be univalent in Δ and θ and ϕ be analytic in domain D containing $q(\Delta)$. Suppose that
(i) $\Re\left(\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right) \geq 0$ for $z \in \Delta$ and
(ii) $Q(z)=z q^{\prime}(z) \phi(q(z))$ is starlike univalent in Δ.

If $p \in \mathcal{H}[q(0), 1] \cap \mathcal{Q}$ with $p(\Delta) \subseteq D$ and $\theta(p(z))+z p^{\prime}(z) \phi(p(z))$ is univalent in Δ, and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \phi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \phi(p(z)), \tag{2.2}
\end{equation*}
$$

then

$$
q(z) \prec p(z)
$$

and $q(z)$ is the best subordinant.

3. Main results

Throughout this paper we assume that α, β, γ and δ are complex numbers and $\delta \neq 0$.

Theorem 3.1. Let $q(z)$ be a convex univalent in Δ with $q(0)=1$. Assume that

$$
\begin{equation*}
\Re\left\{\frac{\beta q(z)+2 \gamma q^{2}(z)}{\delta}-\frac{z q^{\prime}(z)}{q(z)}\right\}>0 . \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{align*}
\psi(z):= & \alpha+\beta \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}}+\gamma\left(\frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}}\right)^{2} \tag{3.2}\\
& +\delta\left[\frac{(z(f * g)(z))^{\prime \prime}}{(f * g)^{\prime}(z)}-\frac{2 z(f * g)^{\prime}(z)}{(f * g)(z)}\right]
\end{align*}
$$

If $f \in \mathcal{A}$ and

$$
\begin{equation*}
\psi(z) \prec \alpha+\beta q(z)+\gamma q^{2}(z)+\delta \frac{z q^{\prime}(z)}{q(z)}, \tag{3.3}
\end{equation*}
$$

then

$$
\frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Proof. Define the functions $p(z)$ by

$$
\begin{equation*}
p(z):=\frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \tag{3.4}
\end{equation*}
$$

Then clearly $p(z)$ is analytic in Δ. Also by a simple computation, we find from (3.4) that

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{(z(f * g)(z))^{\prime \prime}}{(f * g)^{\prime}(z)}-\frac{2 z(f * g)^{\prime}(z)}{(f * g)(z)} .
$$

Also we find that

$$
\begin{align*}
& \psi(z):=\alpha+\beta \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}}+\gamma\left(\frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}}\right)^{2} \tag{3.5}\\
& +\delta\left[\frac{(z(f * g)(z))^{\prime \prime}}{(f * g)^{\prime}(z)}-\frac{2 z(f * g)^{\prime}(z)}{(f * g)(z)}\right]=\alpha+\beta p(z)+\gamma p^{2}(z)+\delta \frac{z p^{\prime}(z)}{p(z)}
\end{align*}
$$

In view of (3.5) the subordination (3.3) becomes

$$
\alpha+\beta p(z)+\gamma p^{2}(z)+\delta \frac{z p^{\prime}(z)}{p(z)} \prec \alpha+\beta q(z)+\gamma q^{2}(z)+\delta \frac{z q^{\prime}(z)}{q(z)}
$$

and this can be rewritten as (2.1), where $\theta(w):=\alpha+\beta w+\gamma w^{2}$ and $\phi(w)=\frac{\delta}{w}$. Note that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C} \backslash\{0\}$. Since $\delta \neq 0$, we have $\phi(w) \neq 0$. Let the functions $Q(z)$ and $h(z)$ defined as

$$
Q(z):=z q^{\prime}(z) \phi(q(z))=\delta \frac{z q^{\prime}(z)}{q(z)}
$$

$$
h(z):=\alpha+\beta q(z)+\gamma q^{2}(z)+\delta \frac{z q^{\prime}(z)}{q(z)} .
$$

In light of hypothesis of Theorem 2.1, we see that $Q(z)$ is starlike and

$$
\Re\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\Re\left\{\frac{\beta q(z)+2 \gamma q^{2}(z)}{\delta}-\frac{z q^{\prime}(z)}{q(z)}+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\} .
$$

Hence the result follows as an application of Theorem 2.1.
By taking $\alpha=\beta=\gamma=0$ and $\delta=1$ in Theorem we get the following result of Ravichandran et.al.[10].

Corollary 3.2. If $f(z) \in \mathcal{A}$ and

$$
\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)} \prec \frac{z q^{\prime}(z)}{q(z)}
$$

then

$$
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)} \prec q(z)
$$

Theorem 3.3. Let $q(z)$ be convex univalent in Δ with $q(0)=1$ and satisfies

$$
\begin{equation*}
\Re\left\{\frac{\beta q(z)+2 \gamma(q(z))^{2}}{\delta}\right\}>0 \tag{3.6}
\end{equation*}
$$

If $f \in \mathcal{A}, 0 \neq \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $\psi(z)$ as defined by (3.2) is univalent in Δ, then

$$
\begin{equation*}
\alpha+\beta q(z)+\gamma q^{2}(z)+\delta \frac{z q^{\prime}(z)}{q(z)} \prec \psi(z) \tag{3.7}
\end{equation*}
$$

implies

$$
q(z) \prec \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}}
$$

and $q(z)$ is best subordinant.
Proof. In view of (3.5) the superordination (3.7) becomes

$$
\alpha+\beta q(z)+\gamma q^{2}(z)+\delta \frac{z q^{\prime}(z)}{q(z)} \prec \alpha+\beta p(z)+\gamma p^{2}(z)+\delta \frac{z p^{\prime}(z)}{p(z)}
$$

and this can be written as (2.2), where $\theta(w)=\alpha+\beta w+\gamma w^{2}$ and $\phi(w)=\frac{\delta}{w}$. Note that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C} \backslash\{0\}$. In light of hypothesis of Theorem 2.2, we see that

$$
\Re\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}=\Re\left\{\frac{\beta q(z)+2 \gamma(q(z))^{2}}{\delta}\right\}
$$

Hence the result follows as an application of Theorem 2.2.
By combining Theorem 3.1 and Theorem 3.3 we get the following sandwich result.

Theorem 3.4. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ with $q_{1}(0)=q_{2}(0)=1$ where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $\psi(z)$ as defined by (3.2) is univalent in Δ, then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2}(f * g)^{\prime}(z)}{[(f * g)(z)]^{2}} \prec q_{2}(z)
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By taking $g(z)=z+\sum_{n=2}^{\infty} \Gamma_{n} z^{n}$ in Theorem 3.4, where Γ_{n} is as defined in (1.2), we get the following result involving Dziok-Srivatsava operator.

Corollary 3.5. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ with $q_{1}(0)=q_{2}(0)=1$ where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2}\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{\prime}}{\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\begin{aligned}
\psi(z)= & \alpha+\beta \frac{z^{2}\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{\prime}}{\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{2}}+\gamma\left[\frac{z^{2}\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{\prime}}{\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{2}}\right]^{2} \\
& +\delta\left[\frac{\left(z H^{l, m}\left(\alpha_{1}\right) f(z)\right)^{\prime \prime}}{\left(H^{l, m}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-\frac{2 z\left(H^{l, m}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H^{l, m}\left(\alpha_{1}\right) f(z)}\right]
\end{aligned}
$$

is univalent in Δ then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2}\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{\prime}}{\left[H^{l, m}\left(\alpha_{1}\right) f(z)\right]^{2}} \prec q_{2}(z)
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By taking $l=2, m=1, \alpha_{1}=a, \alpha_{2}=1$ and $\beta_{1}=c$ in Corollary 3.5 we get the following result involving Carlson-Shaffer linear operator.
Corollary 3.6. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ
with $q_{1}(0)=q_{2}(0)=1$, where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2}(L(a, c) f(z))^{\prime}}{(L(a, c) f(z))^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\begin{aligned}
\psi(z):= & \alpha+\beta \frac{z^{2}(L(a, c) f(z))^{\prime}}{(L(a, c) f(z))^{2}}+\gamma\left[\frac{z^{2}(L(a, c) f(z))^{\prime}}{(L(a, c) f(z))^{2}}\right]^{2} \\
& +\delta\left[\frac{(z L(a, c) f(z))^{\prime \prime}}{(L(a, c) f(z))^{\prime}}-\frac{2 z(L(a, c) f(z))^{\prime}}{L(a, c) f(z)}\right]
\end{aligned}
$$

is univalent in Δ then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2}(L(a, c) f(z))^{\prime}}{(L(a, c) f(z))^{2}} \prec q_{2}(z),
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By fixing $g(z)=\frac{z}{(1-z)^{\lambda+1}}$ in Theorem 3.4 we get the following result involving Ruscheweyh derivative.

Corollary 3.7 Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ with $q_{1}(0)=q_{2}(0)=1$ where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2}\left(D^{\lambda} f(z)\right)^{\prime}}{\left(D^{\lambda} f(z)\right)^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\psi(z):=\alpha+\beta \frac{z^{2}\left(D^{\lambda} f(z)\right)^{\prime}}{\left(D^{\lambda} f(z)\right)^{2}}+\gamma\left[\frac{z^{2}\left(D^{\lambda} f(z)\right)^{\prime}}{\left(D^{\lambda} f(z)\right)^{2}}\right]^{2}+\delta\left[\frac{\left(z D^{\lambda} f(z)\right)^{\prime \prime}}{\left(D^{\lambda} f(z)\right)^{\prime}}-\frac{2 z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}\right]
$$

is univalent in Δ, then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2}\left(D^{\lambda} f(z)\right)^{\prime}}{\left(D^{\lambda} f(z)\right)^{2}} \prec q_{2}(z),
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By fixing $g(z)=z+\sum_{n=2}^{\infty}\left(\frac{\lambda+n}{1+\lambda}\right)^{m} z^{n}$ we get the following result involving Multiplier transformation.

Corollary 3.8. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ
with $q_{1}(0)=q_{2}(0)=1$, where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2}(I(m, \lambda) f(z))^{\prime}}{[I(m, \lambda) f(z)]^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\begin{aligned}
\psi(z):= & \alpha+\beta \frac{z^{2}(I(m, \lambda) f(z))^{\prime}}{[I(m, \lambda) f(z)]^{2}}+\gamma\left[\frac{z^{2}(I(m, \lambda) f(z))^{\prime}}{[I(m, \lambda) f(z)]^{2}}\right]^{2} \\
& +\delta\left[\frac{(z I(m, \lambda) f(z))^{\prime \prime}}{(I(m, \lambda) f(z))^{\prime}}-\frac{2 z(I(m, \lambda) f(z))^{\prime}}{I(m, \lambda) f(z)}\right]
\end{aligned}
$$

is univalent in Δ, then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2}(I(m, \lambda) f(z))^{\prime}}{[I(m, \lambda) f(z)]^{2}} \prec q_{2}(z),
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By taking $\lambda=0$ in the Corollory 3.8 we get the following result involving Sălăgean derivative.

Corollary 3.9. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ with $q_{1}(0)=q_{2}(0)=1$, where $q_{1}(z)$ satisfies (3.6) and $q_{2}(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z \mathcal{D}^{m+1} f(z)}{\left[\mathcal{D}^{m} f(z)\right]^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\psi(z):=\alpha+\beta \frac{z \mathcal{D}^{m+1} f(z)}{\left[\mathcal{D}^{m} f(z)\right]^{2}}+\gamma\left[\frac{z \mathcal{D}^{m+1} f(z)}{\left[\mathcal{D}^{m} f(z)\right]^{2}}\right]^{2}+\delta\left[\frac{z\left(z \mathcal{D}^{m} f(z)\right)^{\prime \prime}}{\mathcal{D}^{m+1} f(z)}-\frac{2 \mathcal{D}^{m+1} f(z)}{\mathcal{D}^{m} f(z)}\right]
$$

is univalent in Δ, then

$$
\alpha+\beta q_{1}(z)+\gamma q_{1}^{2}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec \alpha+\beta q_{2}(z)+\gamma q_{2}^{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z \mathcal{D}^{m+1} f(z)}{\left[\mathcal{D}^{m} f(z)\right]^{2}} \prec q_{2}(z),
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.
By taking $g(z)=\frac{z}{1-z}, \alpha=0, \beta=1$ and $\gamma=0$ we get the following result.
Corollary 3.10. Let $q_{1}(z)$ and $q_{2}(z)$ be convex univalent functions defined on Δ with $q_{1}(0)=q_{2}(0)=1$ where $q_{1}(z)$ satisfies

$$
\Re\left\{\frac{q_{1}(z)}{\delta}\right\}>0
$$

and $q_{2}(z)$ satisfies

$$
\Re\left\{\frac{q_{2}(z)}{\delta}-\frac{z q_{2}^{\prime}(z)}{q_{2}(z)}\right\}>0 .
$$

Let $f \in \mathcal{A}$ and $0 \neq \frac{z^{2} f^{\prime}(z)}{(f(z))^{2}} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$
\psi(z):=\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}+\delta\left[\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right]
$$

is univalent in Δ then

$$
q_{1}(z)+\delta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec \psi(z) \prec q_{2}(z)+\delta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

implies

$$
q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{(f(z))^{2}} \prec q_{2}(z),
$$

where $q_{1}(z)$ and $q_{2}(z)$ are respectively the best subordinant and best dominant.

References

[1] T. Bulboacă, A Class of superordination preserving integral operators, Indag. Math. (N. S.), 13(3)(2002), 301-311.
[2] T. Bulboacă, Classes of first-order diferential superordinations, Demonstratio. Math., 35(2)(2002), 287-292.
[3] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(10)(2003), 815-826.
[4] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Pure and Applied Mathematics, No.225, Marcel Dekker, New York, (2000).
[5] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4)(1984), 737-745.
[6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
[7] J. Dziok and H. M. Srivatsava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1)(1999), 1-13.
[8] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[9] G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis -fifth RomanianFinnish seminar, Part 1 (Bucharest, 1981), pp. 362-372, Lecture Notes in Math. 1013, Springer, Berlin.
[10] V. Ravichandran, Certain applications of differential subordinations, Far East J. Math. Sci., 12(1)(2004), 41-51.

