KYUNGPOOK Math. J. 49(2009), 47-55

On Sufficient Conditions for Certain Subclass of Analytic Functions Defined by Convolution

PARAMASIVAM SOORIYAKALA*

Department of Mathematics, Jaya College of Arts and Science, Thiruninravur, 602 204, India

e-mail: marikkannan_1947@yahoo.co.in

NATARAJAN MARIKKANNAN

Department of Mathematics, Government Arts College, Paramakudi 623 707, India e-mail: natarajan.marikkannan@gmail.com

ABSTRACT. In the present investigation sufficient conditions are found for certain subclass of normalized analytic functions defined by Hadamard product. Differential sandwich theorems are also obtained. As a special case of this we obtain results involving Ruscheweyh derivative, Sălăgean derivative, Carlson-shaffer operator, Dziok-Srivatsava linear operator, Multiplier transformation.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form

(1.1)
$$f(z) := z + \sum_{n=2}^{\infty} a_n z^n$$

For two functions f(z) defined as in (1.1) and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ the Hadamard product or convolution of f(z) and g(z), denoted by (f * g)(z), is defined by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

For $\alpha_j \in \mathbb{C}$, $(j = 1, 2, \dots, l)$ and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, -3, \dots\}$, $(j = 1, 2, \dots, m)$, the Dziok-Srivatsava linear operator [7] for functions in \mathcal{A} is defined as follows:

$$H^{l,m}(\alpha_1)f(z) := z + \sum_{n=2}^{\infty} \Gamma_n a_n z^n,$$

^{*} Corresponding author.

Received 11 May 2007; accepted 17 March 2008.

²⁰⁰⁰ Mathematics Subject Classification: $30C45,\,30C80.$

Key words and phrases: analytic functions, univalent functions, Hadamard producut, differential subordinations, differential superordinations, Ruscheweyh derivative, Sălăgean derivative, Carlson-Shaffer operator, Dziok-Srivatsava linear operator, multiplier transformation.

⁴⁷

where

(1.2)
$$\Gamma_n := \frac{(\alpha_1)_{n-1} \cdots (\alpha_l)_{n-1}}{(\beta_1)_{n-1} \cdots (\beta_m)_{n-1} (1)_{n-1}},$$

where $(\lambda)_n$ is the Pocchhammer symbol defined by

$$(\lambda)_n := \{ \begin{array}{ll} 1 & (n=0)\\ \lambda(\lambda+1)(\lambda+2)\cdots(\lambda+n-1) & (n=1,2,3,\cdots). \end{array}$$

On defining $g(z) = z + \sum_{n=2}^{\infty} \Gamma_n z^n$, we see that $(f * g)(z) = H^{l,m}(\alpha_1)f(z)$. By taking $l = 2, m = 1, \alpha_1 = a, \alpha_2 = 1$ and $\beta_1 = c$ we see that

$$(f * g)(z) = H^{2,1}(a)f(z) = L(a,c)f(z)$$

where L(a,c)f(z) denotes the Carlson-Shaffer linear operator [5]. On choosing $\frac{z}{(1-z)^{\lambda+1}}(\lambda > -1), \ z + \sum_{n=2}^{\infty} n^m a_n z^n \text{ and } z + \sum_{n=2}^{\infty} \left(\frac{n+\lambda}{1+\lambda}\right)^m z^n$ as g(z), we find (f * g)(z) as $D^{\lambda}f(z), \mathcal{D}^m f(z)$ and $I(r, \lambda)f(z)$ respectively, where $D^{\lambda}, \mathcal{D}^{m}$, and $I(m, \lambda)$ denotes Ruscheweyh derivative of order λ , Sălăgean derivative of order m and Multiplier transformation.

Let \mathcal{H} denotes the class of all analytic functions defined on the open unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. For two analytic functions f and F, we say F is superordinate to f, if f is subordinate to F. Let $p, h \in \mathcal{H}$ and let $\phi(r,s,t;z): \mathbb{C}^3 \times \Delta \to \mathbb{C}$. If p and $\phi(p(z),zp'(z),z^2p''(z);z)$ are univalent and if p satisfies the second order superordination

(1.3)
$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z),$$

then p is the solution of the differential superordination (1.3). An analytic function q(z) is called *subordinant*, if $q(z) \prec p(z)$ for all p(z) satisfying (1.3). A univalent subordinant q(z) that satisfies $q(z) \prec q(z)$ for all subordinants q(z) of (1.3), is said to be best subordinant. Recently Miller and Mocanu [3] considered certain first and second order differential superordinations. Using the results of Miller and Mocanu [3], Bulboacă have considered certain classes of first order differential superordinations [2] as well as superordination preserving integral operators [1].

In the present investigation we obtain the sufficient conditions for normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \frac{z^2(f*g)'(z)}{[(f*g)(z)]^2} \prec q_2(z),$$

where q(z) is the fixed analytic function in \mathcal{A} .

2. Preliminaries

For the present study we may need the following definitions and results.

Definition 2.1 ([3, Definition 2, p.817]) . Denote by \mathcal{Q} , the set of all functions f(z) that are analytic and univalent in $\overline{\Delta} \setminus E(f)$, where

$$E(f) := \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta \setminus E(f)$.

Theorem 2.1 (cf. Miller and Mocanu [4, Theorem 3.4h, p.132]) . Let q(z) be univalent in Δ and θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(w) \neq 0$, when $w \in q(\Delta)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$. Suppose that (i) Q(z) is starlike univalent in Δ and

(ii) $\Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0 \text{ for } z \in \Delta.$ If p is analytic in Δ with $p(\Delta) \subseteq D$ and

(2.1)
$$\theta(p(z)) + zp'(z)\phi((p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$$

then

$$p(z) \prec q(z)$$

and q(z) is the best dominant.

Theorem 2.2 ([2]). Let q(z) be univalent in Δ and θ and ϕ be analytic in domain D containing $q(\Delta)$. Suppose that

(i) $\Re\left(\frac{\theta'(q(z))}{\phi(q(z))}\right) \ge 0$ for $z \in \Delta$ and (ii) $Q(z) = zq'(z)\phi(q(z))$ is starlike univalent in Δ . If $p \in \mathcal{H}[q(0), 1] \cap \mathcal{Q}$ with $p(\Delta) \subseteq D$ and $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in Δ , and

(2.2)
$$\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(p(z)) + zp'(z)\phi(p(z)),$$

then

$$q(z) \prec p(z)$$

and q(z) is the best subordinant.

3. Main results

Throughout this paper we assume that α, β, γ and δ are complex numbers and $\delta \neq 0$.

Theorem 3.1. Let q(z) be a convex univalent in Δ with q(0) = 1. Assume that

(3.1)
$$\Re\left\{\frac{\beta q(z) + 2\gamma q^2(z)}{\delta} - \frac{zq'(z)}{q(z)}\right\} > 0.$$

Let

(3.2)
$$\psi(z) := \alpha + \beta \frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2} + \gamma \left(\frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2} \right)^2 + \delta \left[\frac{(z(f * g)(z))''}{(f * g)'(z)} - \frac{2z(f * g)'(z)}{(f * g)(z)} \right].$$

If $f \in \mathcal{A}$ and

(3.3)
$$\psi(z) \prec \alpha + \beta q(z) + \gamma q^2(z) + \delta \frac{zq'(z)}{q(z)},$$

then

$$\frac{z^2(f*g)'(z)}{[(f*g)(z)]^2} \prec q(z)$$

and q(z) is the best dominant.

Proof. Define the functions p(z) by

(3.4)
$$p(z) := \frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2}.$$

Then clearly p(z) is analytic in Δ . Also by a simple computation, we find from (3.4) that

$$\frac{zp'(z)}{p(z)} = \frac{(z(f*g)(z))''}{(f*g)'(z)} - \frac{2z(f*g)'(z)}{(f*g)(z)}.$$

Also we find that

(3.5)
$$\psi(z) := \alpha + \beta \frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2} + \gamma \left(\frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2}\right)^2 \\ + \delta \left[\frac{(z(f * g)(z))''}{(f * g)'(z)} - \frac{2z(f * g)'(z)}{(f * g)(z)}\right] = \alpha + \beta p(z) + \gamma p^2(z) + \delta \frac{zp'(z)}{p(z)}.$$

In view of (3.5) the subordination (3.3) becomes

$$\alpha + \beta p(z) + \gamma p^2(z) + \delta \frac{zp'(z)}{p(z)} \prec \alpha + \beta q(z) + \gamma q^2(z) + \delta \frac{zq'(z)}{q(z)}$$

and this can be rewritten as (2.1), where $\theta(w) := \alpha + \beta w + \gamma w^2$ and $\phi(w) = \frac{\delta}{w}$. Note that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C} \setminus \{0\}$. Since $\delta \neq 0$, we have $\phi(w) \neq 0$. Let the functions Q(z) and h(z) defined as

$$Q(z) := zq'(z)\phi(q(z)) = \delta \frac{zq'(z)}{q(z)},$$

On Sufficient Conditions

$$h(z) := \alpha + \beta q(z) + \gamma q^2(z) + \delta \frac{zq'(z)}{q(z)}$$

In light of hypothesis of Theorem 2.1, we see that Q(z) is starlike and

$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} = \Re\left\{\frac{\beta q(z) + 2\gamma q^2(z)}{\delta} - \frac{zq'(z)}{q(z)} + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\}.$$

Hence the result follows as an application of Theorem 2.1.

By taking $\alpha = \beta = \gamma = 0$ and $\delta = 1$ in Theorem we get the following result of Ravichandran *et.al.*[10].

Corollary 3.2. If $f(z) \in \mathcal{A}$ and

$$\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \prec \frac{zq'(z)}{q(z)}$$

then

$$\frac{z^2 f'(z)}{f^2(z)} \prec q(z).$$

Theorem 3.3. Let q(z) be convex univalent in Δ with q(0) = 1 and satisfies

(3.6)
$$\Re\left\{\frac{\beta q(z) + 2\gamma (q(z))^2}{\delta}\right\} > 0.$$

If $f \in \mathcal{A}, 0 \neq \frac{z^2(f*g)'(z)}{[(f*g)(z)]^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $\psi(z)$ as defined by (3.2) is univalent in Δ , then

(3.7)
$$\alpha + \beta q(z) + \gamma q^2(z) + \delta \frac{zq'(z)}{q(z)} \prec \psi(z)$$

implies

$$q(z) \prec \frac{z^2 (f * g)'(z)}{[(f * g)(z)]^2}$$

and q(z) is best subordinant.

Proof. In view of (3.5) the superordination (3.7) becomes

$$\alpha + \beta q(z) + \gamma q^2(z) + \delta \frac{zq'(z)}{q(z)} \prec \alpha + \beta p(z) + \gamma p^2(z) + \delta \frac{zp'(z)}{p(z)}$$

and this can be written as (2.2), where $\theta(w) = \alpha + \beta w + \gamma w^2$ and $\phi(w) = \frac{\delta}{w}$. Note that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C} \setminus \{0\}$. In light of hypothesis of Theorem 2.2, we see that

$$\Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} = \Re\left\{\frac{\beta q(z) + 2\gamma(q(z))^2}{\delta}\right\}.$$

Hence the result follows as an application of Theorem 2.2.

By combining Theorem 3.1 and Theorem 3.3 we get the following sandwich result.

Theorem 3.4. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ with $q_1(0) = q_2(0) = 1$ where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2(f*g)'(z)}{[(f*g)(z)]^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $\psi(z)$ as defined by (3.2) is univalent in Δ , then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2(f * g)'(z)}{[(f * g)(z)]^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By taking $g(z) = z + \sum_{n=2}^{\infty} \Gamma_n z^n$ in Theorem 3.4, where Γ_n is as defined in (1.2), we get the following result involving Dziok-Srivatsava operator.

Corollary 3.5. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ with $q_1(0) = q_2(0) = 1$ where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2[H^{l,m}(\alpha_1)f(z)]'}{[H^{l,m}(\alpha_1)f(z)]^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\begin{split} \psi(z) &= \alpha + \beta \frac{z^2 [H^{l,m}(\alpha_1) f(z)]'}{[H^{l,m}(\alpha_1) f(z)]^2} + \gamma \left[\frac{z^2 [H^{l,m}(\alpha_1) f(z)]'}{[H^{l,m}(\alpha_1) f(z)]^2} \right]^2 \\ &+ \delta \left[\frac{(z H^{l,m}(\alpha_1) f(z))''}{(H^{l,m}(\alpha_1) f(z))'} - \frac{2z (H^{l,m}(\alpha_1) f(z))'}{H^{l,m}(\alpha_1) f(z)} \right] \end{split}$$

is univalent in Δ then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2 [H^{l,m}(\alpha_1) f(z)]'}{[H^{l,m}(\alpha_1) f(z)]^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By taking $l = 2, m = 1, \alpha_1 = a, \alpha_2 = 1$ and $\beta_1 = c$ in Corollary 3.5 we get the following result involving Carlson-Shaffer linear operator.

Corollary 3.6. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ

with $q_1(0) = q_2(0) = 1$, where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2(L(a,c)f(z))'}{(L(a,c)f(z))^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\begin{split} \psi(z) &:= \alpha + \beta \frac{z^2 (L(a,c)f(z))'}{(L(a,c)f(z))^2} + \gamma \left[\frac{z^2 (L(a,c)f(z))'}{(L(a,c)f(z))^2} \right]^2 \\ &+ \delta \left[\frac{(zL(a,c)f(z))''}{(L(a,c)f(z))'} - \frac{2z (L(a,c)f(z))'}{L(a,c)f(z)} \right] \end{split}$$

is univalent in Δ then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2 (L(a,c)f(z))'}{(L(a,c)f(z))^2} \prec q_2(z).$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By fixing $g(z) = \frac{z}{(1-z)^{\lambda+1}}$ in Theorem 3.4 we get the following result involving Ruscheweyh derivative.

Corollary 3.7 Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ with $q_1(0) = q_2(0) = 1$ where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2(D^{\lambda}f(z))'}{(D^{\lambda}f(z))^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\psi(z) := \alpha + \beta \frac{z^2 (D^{\lambda} f(z))'}{(D^{\lambda} f(z))^2} + \gamma \left[\frac{z^2 (D^{\lambda} f(z))'}{(D^{\lambda} f(z))^2} \right]^2 + \delta \left[\frac{(zD^{\lambda} f(z))''}{(D^{\lambda} f(z))'} - \frac{2z (D^{\lambda} f(z))'}{D^{\lambda} f(z)} \right]$$

is univalent in Δ , then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2 (D^\lambda f(z))'}{(D^\lambda f(z))^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By fixing $g(z) = z + \sum_{n=2}^{\infty} \left(\frac{\lambda+n}{1+\lambda}\right)^m z^n$ we get the following result involving Multiplier transformation.

Corollary 3.8. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ

with $q_1(0) = q_2(0) = 1$, where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2(I(m,\lambda)f(z))'}{[I(m,\lambda)f(z)]^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\begin{split} \psi(z) &:= \alpha + \beta \frac{z^2 (I(m,\lambda)f(z))'}{[I(m,\lambda)f(z)]^2} + \gamma \left[\frac{z^2 (I(m,\lambda)f(z))'}{[I(m,\lambda)f(z)]^2} \right]^2 \\ &+ \delta \left[\frac{(zI(m,\lambda)f(z))''}{(I(m,\lambda)f(z))'} - \frac{2z (I(m,\lambda)f(z))'}{I(m,\lambda)f(z)} \right] \end{split}$$

is univalent in Δ , then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2 (I(m,\lambda)f(z))'}{[I(m,\lambda)f(z)]^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By taking $\lambda = 0$ in the Corollory 3.8 we get the following result involving Sălăgean derivative.

Corollary 3.9. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ with $q_1(0) = q_2(0) = 1$, where $q_1(z)$ satisfies (3.6) and $q_2(z)$ satisfies (3.1). Let $f \in \mathcal{A}$ and $0 \neq \frac{z\mathcal{D}^{m+1}f(z)}{[\mathcal{D}^m f(z)]^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\psi(z) := \alpha + \beta \frac{z \mathcal{D}^{m+1} f(z)}{[\mathcal{D}^m f(z)]^2} + \gamma \left[\frac{z \mathcal{D}^{m+1} f(z)}{[\mathcal{D}^m f(z)]^2} \right]^2 + \delta \left[\frac{z (z \mathcal{D}^m f(z))''}{\mathcal{D}^{m+1} f(z)} - \frac{2 \mathcal{D}^{m+1} f(z)}{\mathcal{D}^m f(z)} \right]$$

is univalent in Δ , then

$$\alpha + \beta q_1(z) + \gamma q_1^2(z) + \delta \frac{zq_1'(z)}{q_1(z)} \prec \psi(z) \prec \alpha + \beta q_2(z) + \gamma q_2^2(z) + \delta \frac{zq_2'(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z\mathcal{D}^{m+1}f(z)}{[\mathcal{D}^m f(z)]^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

By taking $g(z) = \frac{z}{1-z}$, $\alpha = 0, \beta = 1$ and $\gamma = 0$ we get the following result.

Corollary 3.10. Let $q_1(z)$ and $q_2(z)$ be convex univalent functions defined on Δ with $q_1(0) = q_2(0) = 1$ where $q_1(z)$ satisfies

$$\Re\left\{\frac{q_1(z)}{\delta}\right\} > 0$$

and $q_2(z)$ satisfies

$$\Re\left\{\frac{q_2(z)}{\delta} - \frac{zq_2'(z)}{q_2(z)}\right\} > 0.$$

Let $f \in \mathcal{A}$ and $0 \neq \frac{z^2 f'(z)}{(f(z))^2} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and

$$\psi(z) := \frac{z^2 f'(z)}{(f(z))^2} + \delta \left[\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right]$$

is univalent in Δ then

$$q_1(z) + \delta \frac{zq'_1(z)}{q_1(z)} \prec \psi(z) \prec q_2(z) + \delta \frac{zq'_2(z)}{q_2(z)}$$

implies

$$q_1(z) \prec \frac{z^2 f'(z)}{(f(z))^2} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

References

- T. Bulboacă, A Class of superordination preserving integral operators, Indag. Math. (N. S.), 13(3)(2002), 301-311.
- [2] T. Bulboacă, Classes of first-order differential superordinations, Demonstratio. Math., 35(2)(2002), 287-292.
- S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(10)(2003), 815-826.
- [4] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Pure and Applied Mathematics, No.225, Marcel Dekker, New York, (2000).
- B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4)(1984), 737-745.
- [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
- [7] J. Dziok and H. M. Srivatsava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1)(1999), 1-13.
- [8] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
- G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis -fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), pp. 362-372, Lecture Notes in Math. 1013, Springer, Berlin.
- [10] V. Ravichandran, Certain applications of differential subordinations, Far East J. Math. Sci., 12(1)(2004), 41-51.