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Abstract. The multiplicative semigroups Zn have been widely studied. But, the ideals

of Zn seem to be unknown. In this paper, we provide a complete descriptions of ideals of

the semigroups Zn and their product semigroups Zm ×Zn. We also study the numbers of

ideals in such semigroups.

1. Introduction

Many authors have studied the multiplicative semigroups Zn in various aspects.
For examples, Vandiver and Weaver [9] studied the cyclic subsemigroups generated
by nonunit elements in Zn. In [2], Hewitt and Zuckerman followed [3] to study the
semicharacters of Zn. Later, Ehrlich proved that (Zn, +, ·) is regular if and only if
n is square-free. In 1980, Livingstons solved the problem: compute H and D for
the semigroup Zn where H = max {ha| a ∈ Zn}, D = lcm {da| a ∈ Zn} and ha, da

are the least positive integers such that aha = aha+da . Recently, Kemprasit and
Buapradist showed that: in the multiplicative semigroups Zn, the set of bi-ideals
and the set of quasi-ideals coincide if and only if either n = 4 or n is square-free.

In this papers, we determine all the ideals of these semigroups and their prod-
ucts. The study also show that they are a lot more ideals of Zn and Zm × Zn

as semigroups than those of Zn and Zm × Zn as rings. As usual, if a and b are
integers not both zero, then (a, b) denotes the greatest common divisor of a and
b in Z, and a | b means a divides b in Z. For each positive integer n, we write
Zn = {0, 1, 2, · · · , n − 1} and regard this, in the usual way, as a semigroup under
multiplication modulo n. That is, for each a, b ∈ Zn, we write a.b (or simply ab)
for the remainder r ∈ Zn when the usual product of a and b in Z is divided by n.
It will be clear from the context whether a.b means this product in Zn or the usual
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product in Z.

2. Ideals of Zn

We begin by describing the elements of each principal ideal in Zn.

Lemma 1. If a ∈ Zn and d = n/(a, n) then aZn = {0, a, 2a, · · · , (d − 1)a} and
|aZn| = d.

Proof. If a = 0 then (0, n) = n, so d = 1 and aZn = {0} as required. Suppose a 6= 0
and x ∈ Zn. By the Division Algorithm for Z, we know x = qd+r for some q, r ∈ Z
with 0 ≤ r ≤ d− 1. Therefore, since a/(a, n) is an integer, we have:

xa = qda + ra = qn · a

(a, n)
+ ra ≡ ra mod n.

That is, xa = ra in Zn, and it follows that aZn = {0, a, 2a, · · · , (d−1)a}. Moreover,
if xa = ya for some x, y such that 0 ≤ x < y ≤ d− 1 then (x− y)a = kn for some
k ∈ Z. Hence

(x− y) · a

(a, n)
= kd,

where a/(a, n) and d are coprime, and 0 < x − y < d. Since this is impossible, we
deduce that the elements of {0, a, 2a, · · · , (d−1)a} are distinct and hence |aZn| = d.
�

The next result provides more information about the principal ideals of Zn.

Lemma 2. For each non-zero a ∈ Zn, aZn = (a, n)Zn.

Proof. Since a = (a, n).k for some k ∈ Z+ and (a, n) ∈ Zn, we have aZn ⊆ (a, n)Zn.
Conversely, by the Euclidean Algorithm, (a, n) = ra + sn for some r, s ∈ Z, hence
(a, n) ≡ ra mod n. That is, (a, n) = a.` for some ` ∈ Zn and so (a, n)Zn ⊆ aZn. �

Theorem 1. Every ideal of Zn is principal if and only if n = pk for some prime p
and some integer k ≥ 0. Moreover, in this event, the ideals of Zn are precisely the
set ptZn where 0 ≤ t ≤ k, and hence they form a chain under ⊆.

Proof. Suppose that every ideal of Zn is principal, and assume that there are distinct
prime divisors p, q of n. Then pZn ∪ qZn = xZn for some x ∈ Zn and, without loss
of generality, we assume that x ∈ pZn. This implies xZn ⊆ pZn, hence qZn ⊆ pZn

and so q = pa for some a ∈ Zn. In other words, q = pa + kn for some k ∈ Z, and
hence p|q, a contradiction. Therefore, n = pk for some integer k ≥ 0, as required.

Conversely, suppose that n = pk for some integer k ≥ 0, and let I be an ideal
of Zn. Since {0} = 0Zn and Zn = 1Zn, we can assume that I is non-trivial. Let
a ∈ I\{0}. If p - a then (a, pk) = 1, hence a ∈ Un, the group of units in Zn, and so
1 = a−1a ∈ I, contradicting our assumption. That is, each non-zero element of I is
divisible by some (positive) power of p. Let t be the least positive s such that ps|a
for some non-zero a ∈ I. Then I contains a non-zero element a = ptx where p - x
(otherwise we contradict the choice of t). In fact, since 0 < a < n, we have 0 < x < n
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and so x ∈ Un. Consequently, pt = ptxx−1 ∈ I and so ptZn ⊆ I. Moreover, if b ∈ I
and b = pry then r ≥ t (by the choice of t) and b = pt.pr−ty ∈ ptZn, so I ⊆ ptZn

and equality follows. �

We have already known that Zn as a ring is a principal ideal ring [5] p 133,
Exercise 10(c). But, as a semigroup, Zn is not principal (i.e., some ideals are not
principal) if n 6= pk for some prime number p and k ≥ 1 (see Theorem 2 for detail).

Recall that, if I is an ideal of a commutative semigroup S with identity, then
I = ∪{aS : a ∈ I}; and conversely, the union of any family of principal ideals of
S is an ideal of S. In fact, aS ⊆ bS if and only if b|a. From this observation, we
deduce the following result.

Theorem 2. If I is a non-zero ideal of Zn, then I = ∪{miZn : i = 1, · · · , k},
where m1, · · · , mk are divisors of n such that mi - mj if i 6= j.

Proof. By the above remarks, there exists m1, · · · , mk such that I = ∪{miZn :
i = 1, · · · , k}. Clearly, we can assume mi - mj if i 6= j: otherwise, if mi|mj then
mjZn ⊆ miZn and so mjZn can be omitted from the union. Also, by Lemma 2,
miZn = (mi, n)Zn for each i = 1, · · · , k, so we can assume that each mi is a divisor
of n. �

As an application of Theorem 2, we get a characterization of ideals in the ring
Zn.

Corollary 1. As a ring, the ideals of Zn are precisely the sets

I = mZn,

where m is a divisor of n.

Proof. Let I be an ideal of Zn. If I = {0}, then I = nZn. But, if I is non-zero, then
since Zn is a principal ideal ring it follows from Theorem 2 that I = mZn, where
m is a divisor of n. �

Here, if we denote the number of the divisors of n = pr1
1 · · · p

rk

k where pi are
distinct primes and ri > 0 for all i by d(n) then we see that the number of ideals of
Zn (as ring) is

d(n) = (r1 + 1) · · · (rk + 1)

(see [8] p167, Theorem 2 for detail). But, for the semigroup Zn the number of its
ideals is different except when n = pk for some prime p and k > 0.

Theorem 3. The number of non-zero ideals in Zn equals the number of sets
{z1, · · · , zk} where k ≥ 1, zi|n for each i = 1, · · · , k and, zi - zj if i 6= j.

Proof. It suffices to show that, if I is a non-zero ideals of Zn and I = ∪{xiZn : i =
1, · · · , r} = ∪{yjZn : j = 1, · · · , s} where {x1, · · · , xr} and {y1, · · · , ys} satisfy the
stated condition, then r = s and {x1, · · · , xr} = {y1, · · · , ys}. To see this, first note
that x1 ∈ yjZn for some j ∈ {1, · · · , s} and yj ∈ xkZn for some k ∈ {1, · · · , r},
hence x1 = yju and yj = xkv for some u, v ∈ Zn, so x1 = xkvu. Since xk|n, this
implies xk|x1, a contradiction unless k = 1. That is, x1Zn ⊆ yjZn ⊆ xkZn, and thus
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x1Zn = yjZn. Consequently, x1 = yju and yj = x1v and, since yj |n and x1|n, we de-
duce that yj |x1 and x1|yj in Z, so x1 = yj . Similarly, {x2, · · · , xr} ⊆ {y1, · · · , ys}
and hence r ≤ s. Using the same argument, but starting with y1, we find that
{y1, · · · , ys} ⊆ {x1, · · · , xr}, hence s ≤ r and so the two sets are equal. �

3. Ideals of Zm × Zn

The Chinese Remainder Theorem states that, if m, n are coprime, then Zmn is
isomorphic to Zm × Zn as rings, hence they are isomorphic as semigroups in this
event (for a proof, see [5]). However, if (m, n) 6= 1 then, as semigroups, Zmn may
not be isomorphic to Zm×Zn. To illustrate this, we first remark that, if p is prime
and k ≥ 1, then the only idempotents in Zpk are 0 and 1.

Example 1. By the last remark, the only non-trivial idempotents in Z3 × Z4 are
(1, 0) and (0, 1), and we know Z12

∼= Z3 × Z4, so Z12 contains exactly two non-
trivial idempotents. Now, if (a, b) ∈ Z2 × Z6 is an idempotent then a = 0, 1 and
b = 0, 1, 3, 4 so Z2 × Z6 contains more than two non-trivial idempotents. Hence,
Z12 � Z2 × Z6 as semigroups.

More generally, Suppose p 6= q are primes. Then the Chinese Remainder Theo-
rem implies Zpq2 ∼= Zp × Zq2 , hence Zpq2 contains exactly two non-trivial idempo-
tents. Likewise, Zpq

∼= Zp×Zq, so Zpq contains exactly two non-trivial idempotents.
Therefore, Zpq2 � Zq × Zpq, since Zq × Zpq contains at least four non-trivial idem-
potents.

In view of these remarks, we now determine all ideals of Zm × Zn. Like before,
since Zm×Zn contains an identity, every non-zero ideal I of Zm×Zn can be written
as

I =
⋃
{(ai, bi) · Zm × Zn : i = 1, · · · , k} =

⋃
{aiZm × biZn : i = 1, · · · , k}

for some k ≥ 1 and some ai, bi in Zm,Zn respectively. In fact, by Lemma 2, we can
assume that

(A1) each ai = 0 or ai|m and, each bi = 0 or bi|n.

We can also assume that (ai, bi) 6= (0, 0) for each i = 1, · · · , k and that ai - aj

or bi - bj if i 6= j (for the same reason as before). Clearly, this means

(A2) if i 6= j and ai = 0, bi 6= 0, then bj - bi,
(A3) if i 6= j and ai 6= 0, bi = 0, then aj - ai,
(A4) if i 6= j and ai 6= 0, bi 6= 0, then ai - aj or bi - bj .

In other words, we have the following result.

Theorem 4. If I is a non-zero ideal of Zm × Zn, then I =
⋃
{aiZm × biZn : i =

1, · · · , k} for some k ≥ 1 and some (ai, bi) ∈ Zm × Zn which satisfy (A1) - (A4).

In general, if R1, R2 are rings with identities, then all ideals of R1 × R2 have
the form I × J for some ideals I, J of R1, R2 respectively [5] p135, Exercise 22(a).
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But, this is not true for semigroup Zm ×Zn. For example, K = (1, 0)Zm

⋃
(0, 1)Zn

is an ideal of Zm × Zn by Theorem 4, but K does not equal A × B for any ideals
A, B of Zm and Zn respectively. However, as an application of Theorem 4, we get
a characterization of ideals in the ring Zm × Zn as follows:

Corollary 2. As a ring, the ideals of Zm × Zn are precisely the sets

J = uZm × vZn,

where u and v are divisors of m and n respectively.

Proof. Let J be an ideal of Zn. If J = {(0, 0)}, then J = mZm × nZn. But, if J is
non-zero, then since Zm×Zn is a principal ideal rings we have J = (u, v)Zm×Zn =
uZm×vZn where u = 0 or u | m; and v = 0 or v | n by Theorem 4. Since 0Zt = tZt,
so J = uZm × vZn where u, v are divisors of m, n respectively. �

In view of Corollary 2 and Corollary 1, we have the number of ideals of the ring
Zm × Zn where the prime decompositions of m = pr1

1 · · · p
rk

k and n = qs1
1 · · · q

st
t is

d(m)d(n) = (r1 + 1) · · · (rk + 1)(s1 + 1) · · · (st + 1).

But, for the semigroup Zm × Zn the result is completely different:

Theorem 5. The number of non-zero ideals in Zm × Zn equals the number of the
sets {(a1, b1), · · · , (ak, bk)} where k ≥ 1 and (ai, bi) ∈ Zm ×Zn which satisfy (A1) -
(A4).

Proof. Let I be a non-zero ideals of Zm×Zn and I =
⋃
{aiZm×biZn : i = 1, · · · , r}

=
⋃
{cjZm×djZn : j = 1, · · · , s} where (ai, bi) and (cj , dj) satisfy (A1) - (A4). We

aim to prove that r = s and {(a1, b1), · · · , (ar, br)} = {(c1, d1), · · · , (cs, ds)}. For
convenience, let B = {(a1, b1), · · · , (ar, br)} and C = {(c1, d1), · · · , (cs, ds)}. First,
we note that (a1, b1) ∈ c`Zm × d`Zn for some ` ∈ {1, · · · , s} and (c`, d`) ∈ akZm ×
bkZn for some k ∈ {1, · · · , r}, hence a1 = c`u, b1 = d`v and c` = akx, d` = bky
for some u, x ∈ Zm and v, y ∈ Zn, so a1 = akxu and b1 = bkyv. We claim that
(a1, b1) = (c`, d`). And, consider the ordered pairs (ak, bk) ∈ B and (c`, d`) ∈ C in
the following cases:

Case 1. ak = 0. Then c` = akx = 0 · x = 0 = c`u = a1 which implies b1 6= 0 6= d`.
From ak = 0, we must have 0 6= bk | n and thus bk | b1 (since b1 = bkyv), so bk = b1

otherwise it will contradict to that B satisfies (A1) - A(4). Since b1 = d`v, d` = bky
and d` | n, bk | n, it follows that d` | b1 and b1 = bk | d` and hence b1 = d`.

Case 2. bk = 0. By using the same arguments as given in case 1, but starting with
d` = bky = 0 · y = 0 = d`v = b1 and a1 = akxu we get a1 = c`.

Case 3. c` = 0. Then a1 = c`u = 0 · u = 0 = c` which implies b1 6= 0 6= d`. If
bk = 0, then d` = bky = 0 · y = 0 = 0 · v = b1 which is a contradiction. So bk | n,
and since d` = bky we get bk | d`. Since b1 = d`v and d` | n, so d` | b1. Thus bk | b1

and 0 6= ak | a1 and B satisfies (A4) imply k = 1, hence ak = a1 and bk = b1. From
b1 = bk | d` and d` | b1, we get b1 = d`.
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Case 4. d` = 0. By using the same arguments as given in case 3, but starting with
b1 = d`v = 0 · v = 0 = d` and consider ak instead of bk we find that a1 = c`.

Case 5. ak, bk, c`, d` /∈ {0}. Then ak | m, c` | m and bk | n, d` | n. From
a1 = akxu, b1 = bkyv and ak | m, bk | n, we get ak | a1 and bk | b1. Since
(ak, bk) and (a1, b1) satisfy (A4), so k = 1, this means ak = a1 and bk = b1. Since
c` = akx, a1 = c`u and ak | m, c` | m, it follows that a1 = ak | c` and c` | a1 which
implies a1 = c`. From b1 = d`v, d` = bky and d` | n, bk | n, we get d` | b1 and
b1 = bk | d`, so b1 = d`.

Therefore, in each cases we get (a1, b1) = (c`, d`). Similarly, we can prove
that {(a2, b2), · · · , (ar, br)} ⊆ {(c1, d1), · · · , (cs, ds)} and hence r ≤ s. Using the
same arguments, but beginning with (c1, d1) we find that {(c1, d1), · · · , (cs, ds)} ⊆
{(a1, b1), · · · , (ar, br)}, hence s ≤ r and so s = r and the two sets are equal. �
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