Ideals of the Multiplicative Semigroups \mathbb{Z}_{n} and their Products

Wattapong Puninagool
Department of Mathematics, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
e-mail: wattapong1p@yahoo.com
Jintana Sanwong*
Department of Mathematics, Chiang Mai University, Chiang Mai, 50200, Thailand
e-mail: scmti004@chiangmai.ac.th

Abstract. The multiplicative semigroups \mathbb{Z}_{n} have been widely studied. But, the ideals of \mathbb{Z}_{n} seem to be unknown. In this paper, we provide a complete descriptions of ideals of the semigroups \mathbb{Z}_{n} and their product semigroups $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. We also study the numbers of ideals in such semigroups.

1. Introduction

Many authors have studied the multiplicative semigroups \mathbb{Z}_{n} in various aspects. For examples, Vandiver and Weaver [9] studied the cyclic subsemigroups generated by nonunit elements in \mathbb{Z}_{n}. In [2], Hewitt and Zuckerman followed [3] to study the semicharacters of \mathbb{Z}_{n}. Later, Ehrlich proved that $\left(\mathbb{Z}_{n},+, \cdot\right)$ is regular if and only if n is square-free. In 1980, Livingstons solved the problem: compute H and D for the semigroup \mathbb{Z}_{n} where $H=\max \left\{h_{a} \mid a \in \mathbb{Z}_{n}\right\}, D=l c m\left\{d_{a} \mid a \in \mathbb{Z}_{n}\right\}$ and h_{a}, d_{a} are the least positive integers such that $a^{h_{a}}=a^{h_{a}+d_{a}}$. Recently, Kemprasit and Buapradist showed that: in the multiplicative semigroups \mathbb{Z}_{n}, the set of bi-ideals and the set of quasi-ideals coincide if and only if either $n=4$ or n is square-free.

In this papers, we determine all the ideals of these semigroups and their products. The study also show that they are a lot more ideals of \mathbb{Z}_{n} and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ as semigroups than those of \mathbb{Z}_{n} and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ as rings. As usual, if a and b are integers not both zero, then (a, b) denotes the greatest common divisor of a and b in \mathbb{Z}, and $a \mid b$ means a divides b in \mathbb{Z}. For each positive integer n, we write $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and regard this, in the usual way, as a semigroup under multiplication modulo n. That is, for each $a, b \in \mathbb{Z}_{n}$, we write $a . b$ (or simply $a b$) for the remainder $r \in \mathbb{Z}_{n}$ when the usual product of a and b in \mathbb{Z} is divided by n. It will be clear from the context whether $a . b$ means this product in \mathbb{Z}_{n} or the usual

[^0]product in \mathbb{Z}.

2. Ideals of \mathbb{Z}_{n}

We begin by describing the elements of each principal ideal in \mathbb{Z}_{n}.
Lemma 1. If $a \in \mathbb{Z}_{n}$ and $d=n /(a, n)$ then $a \mathbb{Z}_{n}=\{0, a, 2 a, \cdots,(d-1) a\}$ and $\left|a \mathbb{Z}_{n}\right|=d$.
Proof. If $a=0$ then $(0, n)=n$, so $d=1$ and $a \mathbb{Z}_{n}=\{0\}$ as required. Suppose $a \neq 0$ and $x \in \mathbb{Z}_{n}$. By the Division Algorithm for \mathbb{Z}, we know $x=q d+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r \leq d-1$. Therefore, since $a /(a, n)$ is an integer, we have:

$$
x a=q d a+r a=q n \cdot \frac{a}{(a, n)}+r a \equiv r a \bmod n .
$$

That is, $x a=r a$ in \mathbb{Z}_{n}, and it follows that $a \mathbb{Z}_{n}=\{0, a, 2 a, \cdots,(d-1) a\}$. Moreover, if $x a=y a$ for some x, y such that $0 \leq x<y \leq d-1$ then $(x-y) a=k n$ for some $k \in \mathbb{Z}$. Hence

$$
(x-y) \cdot \frac{a}{(a, n)}=k d
$$

where $a /(a, n)$ and d are coprime, and $0<x-y<d$. Since this is impossible, we deduce that the elements of $\{0, a, 2 a, \cdots,(d-1) a\}$ are distinct and hence $\left|a \mathbb{Z}_{n}\right|=d$.

The next result provides more information about the principal ideals of \mathbb{Z}_{n}.
Lemma 2. For each non-zero $a \in \mathbb{Z}_{n}$, $a \mathbb{Z}_{n}=(a, n) \mathbb{Z}_{n}$.
Proof. Since $a=(a, n) . k$ for some $k \in \mathbb{Z}^{+}$and $(a, n) \in \mathbb{Z}_{n}$, we have $a \mathbb{Z}_{n} \subseteq(a, n) \mathbb{Z}_{n}$. Conversely, by the Euclidean Algorithm, $(a, n)=r a+s n$ for some $r, s \in \mathbb{Z}$, hence $(a, n) \equiv r a \bmod n$. That is, $(a, n)=a . \ell$ for some $\ell \in \mathbb{Z}_{n}$ and so $(a, n) \mathbb{Z}_{n} \subseteq a \mathbb{Z}_{n}$.

Theorem 1. Every ideal of \mathbb{Z}_{n} is principal if and only if $n=p^{k}$ for some prime p and some integer $k \geq 0$. Moreover, in this event, the ideals of \mathbb{Z}_{n} are precisely the set $p^{t} \mathbb{Z}_{n}$ where $0 \leq t \leq k$, and hence they form a chain under \subseteq.
Proof. Suppose that every ideal of \mathbb{Z}_{n} is principal, and assume that there are distinct prime divisors p, q of n. Then $p \mathbb{Z}_{n} \cup q \mathbb{Z}_{n}=x \mathbb{Z}_{n}$ for some $x \in \mathbb{Z}_{n}$ and, without loss of generality, we assume that $x \in p \mathbb{Z}_{n}$. This implies $x \mathbb{Z}_{n} \subseteq p \mathbb{Z}_{n}$, hence $q \mathbb{Z}_{n} \subseteq p \mathbb{Z}_{n}$ and so $q=p a$ for some $a \in \mathbb{Z}_{n}$. In other words, $q=p a+k n$ for some $k \in \mathbb{Z}$, and hence $p \mid q$, a contradiction. Therefore, $n=p^{k}$ for some integer $k \geq 0$, as required.

Conversely, suppose that $n=p^{k}$ for some integer $k \geq 0$, and let I be an ideal of \mathbb{Z}_{n}. Since $\{0\}=0 \mathbb{Z}_{n}$ and $\mathbb{Z}_{n}=1 \mathbb{Z}_{n}$, we can assume that I is non-trivial. Let $a \in I \backslash\{0\}$. If $p \nmid a$ then $\left(a, p^{k}\right)=1$, hence $a \in U_{n}$, the group of units in \mathbb{Z}_{n}, and so $1=a^{-1} a \in I$, contradicting our assumption. That is, each non-zero element of I is divisible by some (positive) power of p. Let t be the least positive s such that $p^{s} \mid a$ for some non-zero $a \in I$. Then I contains a non-zero element $a=p^{t} x$ where $p \nmid x$ (otherwise we contradict the choice of t). In fact, since $0<a<n$, we have $0<x<n$
and so $x \in U_{n}$. Consequently, $p^{t}=p^{t} x x^{-1} \in I$ and so $p^{t} \mathbb{Z}_{n} \subseteq I$. Moreover, if $b \in I$ and $b=p^{r} y$ then $r \geq t$ (by the choice of t) and $b=p^{t} . p^{r-t} y \in p^{t} \mathbb{Z}_{n}$, so $I \subseteq p^{t} \mathbb{Z}_{n}$ and equality follows.

We have already known that \mathbb{Z}_{n} as a ring is a principal ideal ring [5] p 133, Exercise $10(\mathrm{c})$. But, as a semigroup, \mathbb{Z}_{n} is not principal (i.e., some ideals are not principal) if $n \neq p^{k}$ for some prime number p and $k \geq 1$ (see Theorem 2 for detail).

Recall that, if I is an ideal of a commutative semigroup S with identity, then $I=\cup\{a S: a \in I\}$; and conversely, the union of any family of principal ideals of S is an ideal of S. In fact, $a S \subseteq b S$ if and only if $b \mid a$. From this observation, we deduce the following result.

Theorem 2. If I is a non-zero ideal of \mathbb{Z}_{n}, then $I=\cup\left\{m_{i} \mathbb{Z}_{n}: i=1, \cdots, k\right\}$, where m_{1}, \cdots, m_{k} are divisors of n such that $m_{i} \nmid m_{j}$ if $i \neq j$.
Proof. By the above remarks, there exists m_{1}, \cdots, m_{k} such that $I=\cup\left\{m_{i} \mathbb{Z}_{n}\right.$: $i=1, \cdots, k\}$. Clearly, we can assume $m_{i} \nmid m_{j}$ if $i \neq j$: otherwise, if $m_{i} \mid m_{j}$ then $m_{j} \mathbb{Z}_{n} \subseteq m_{i} \mathbb{Z}_{n}$ and so $m_{j} \mathbb{Z}_{n}$ can be omitted from the union. Also, by Lemma 2, $m_{i} \mathbb{Z}_{n}=\left(m_{i}, n\right) \mathbb{Z}_{n}$ for each $i=1, \cdots, k$, so we can assume that each m_{i} is a divisor of n.

As an application of Theorem 2, we get a characterization of ideals in the ring \mathbb{Z}_{n}.

Corollary 1. As a ring, the ideals of \mathbb{Z}_{n} are precisely the sets

$$
I=m \mathbb{Z}_{n}
$$

where m is a divisor of n.
Proof. Let I be an ideal of \mathbb{Z}_{n}. If $I=\{0\}$, then $I=n \mathbb{Z}_{n}$. But, if I is non-zero, then since \mathbb{Z}_{n} is a principal ideal ring it follows from Theorem 2 that $I=m \mathbb{Z}_{n}$, where m is a divisor of n.

Here, if we denote the number of the divisors of $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ where p_{i} are distinct primes and $r_{i}>0$ for all i by $d(n)$ then we see that the number of ideals of \mathbb{Z}_{n} (as ring) is

$$
d(n)=\left(r_{1}+1\right) \cdots\left(r_{k}+1\right)
$$

(see [8] p167, Theorem 2 for detail). But, for the semigroup \mathbb{Z}_{n} the number of its ideals is different except when $n=p^{k}$ for some prime p and $k>0$.

Theorem 3. The number of non-zero ideals in \mathbb{Z}_{n} equals the number of sets $\left\{z_{1}, \cdots, z_{k}\right\}$ where $k \geq 1, z_{i} \mid n$ for each $i=1, \cdots, k$ and, $z_{i} \nmid z_{j}$ if $i \neq j$.
Proof. It suffices to show that, if I is a non-zero ideals of \mathbb{Z}_{n} and $I=\cup\left\{x_{i} \mathbb{Z}_{n}: i=\right.$ $1, \cdots, r\}=\cup\left\{y_{j} \mathbb{Z}_{n}: j=1, \cdots, s\right\}$ where $\left\{x_{1}, \cdots, x_{r}\right\}$ and $\left\{y_{1}, \cdots, y_{s}\right\}$ satisfy the stated condition, then $r=s$ and $\left\{x_{1}, \cdots, x_{r}\right\}=\left\{y_{1}, \cdots, y_{s}\right\}$. To see this, first note that $x_{1} \in y_{j} \mathbb{Z}_{n}$ for some $j \in\{1, \cdots, s\}$ and $y_{j} \in x_{k} \mathbb{Z}_{n}$ for some $k \in\{1, \cdots, r\}$, hence $x_{1}=y_{j} u$ and $y_{j}=x_{k} v$ for some $u, v \in \mathbb{Z}_{n}$, so $x_{1}=x_{k} v u$. Since $x_{k} \mid n$, this implies $x_{k} \mid x_{1}$, a contradiction unless $k=1$. That is, $x_{1} \mathbb{Z}_{n} \subseteq y_{j} \mathbb{Z}_{n} \subseteq x_{k} \mathbb{Z}_{n}$, and thus
$x_{1} \mathbb{Z}_{n}=y_{j} \mathbb{Z}_{n}$. Consequently, $x_{1}=y_{j} u$ and $y_{j}=x_{1} v$ and, since $y_{j} \mid n$ and $x_{1} \mid n$, we deduce that $y_{j} \mid x_{1}$ and $x_{1} \mid y_{j}$ in \mathbb{Z}, so $x_{1}=y_{j}$. Similarly, $\left\{x_{2}, \cdots, x_{r}\right\} \subseteq\left\{y_{1}, \cdots, y_{s}\right\}$ and hence $r \leq s$. Using the same argument, but starting with y_{1}, we find that $\left\{y_{1}, \cdots, y_{s}\right\} \subseteq\left\{x_{1}, \cdots, x_{r}\right\}$, hence $s \leq r$ and so the two sets are equal.

3. Ideals of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$

The Chinese Remainder Theorem states that, if m, n are coprime, then $\mathbb{Z}_{m n}$ is isomorphic to $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ as rings, hence they are isomorphic as semigroups in this event (for a proof, see [5]). However, if $(m, n) \neq 1$ then, as semigroups, $\mathbb{Z}_{m n}$ may not be isomorphic to $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. To illustrate this, we first remark that, if p is prime and $k \geq 1$, then the only idempotents in $\mathbb{Z}_{p^{k}}$ are 0 and 1 .

Example 1. By the last remark, the only non-trivial idempotents in $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ are $(1,0)$ and $(0,1)$, and we know $\mathbb{Z}_{12} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$, so \mathbb{Z}_{12} contains exactly two nontrivial idempotents. Now, if $(a, b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ is an idempotent then $a=0,1$ and $b=0,1,3,4$ so $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ contains more than two non-trivial idempotents. Hence, $\mathbb{Z}_{12} \not \neq \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ as semigroups.

More generally, Suppose $p \neq q$ are primes. Then the Chinese Remainder Theorem implies $\mathbb{Z}_{p q^{2}} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q^{2}}$, hence $\mathbb{Z}_{p q^{2}}$ contains exactly two non-trivial idempotents. Likewise, $\mathbb{Z}_{p q} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}$, so $\mathbb{Z}_{p q}$ contains exactly two non-trivial idempotents. Therefore, $\mathbb{Z}_{p q^{2}} \not \not \mathbb{Z}_{q} \times \mathbb{Z}_{p q}$, since $\mathbb{Z}_{q} \times \mathbb{Z}_{p q}$ contains at least four non-trivial idempotents.

In view of these remarks, we now determine all ideals of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. Like before, since $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ contains an identity, every non-zero ideal I of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ can be written as

$$
I=\bigcup\left\{\left(a_{i}, b_{i}\right) \cdot \mathbb{Z}_{m} \times \mathbb{Z}_{n}: i=1, \cdots, k\right\}=\bigcup\left\{a_{i} \mathbb{Z}_{m} \times b_{i} \mathbb{Z}_{n}: i=1, \cdots, k\right\}
$$

for some $k \geq 1$ and some a_{i}, b_{i} in $\mathbb{Z}_{m}, \mathbb{Z}_{n}$ respectively. In fact, by Lemma 2 , we can assume that
(A1) each $a_{i}=0$ or $a_{i} \mid m$ and, each $b_{i}=0$ or $b_{i} \mid n$.
We can also assume that $\left(a_{i}, b_{i}\right) \neq(0,0)$ for each $i=1, \cdots, k$ and that $a_{i} \nmid a_{j}$ or $b_{i} \nmid b_{j}$ if $i \neq j$ (for the same reason as before). Clearly, this means
(A2) if $i \neq j$ and $a_{i}=0, b_{i} \neq 0$, then $b_{j} \nmid b_{i}$,
(A3) if $i \neq j$ and $a_{i} \neq 0, b_{i}=0$, then $a_{j} \nmid a_{i}$,
(A4) if $i \neq j$ and $a_{i} \neq 0, b_{i} \neq 0$, then $a_{i} \nmid a_{j}$ or $b_{i} \nmid b_{j}$.
In other words, we have the following result.
Theorem 4. If I is a non-zero ideal of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, then $I=\bigcup\left\{a_{i} \mathbb{Z}_{m} \times b_{i} \mathbb{Z}_{n}: i=\right.$ $1, \cdots, k\}$ for some $k \geq 1$ and some $\left(a_{i}, b_{i}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ which satisfy (A1)-(A4).

In general, if R_{1}, R_{2} are rings with identities, then all ideals of $R_{1} \times R_{2}$ have the form $I \times J$ for some ideals I, J of R_{1}, R_{2} respectively [5] p135, Exercise 22(a).

But, this is not true for semigroup $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. For example, $K=(1,0) \mathbb{Z}_{m} \bigcup(0,1) \mathbb{Z}_{n}$ is an ideal of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by Theorem 4 , but K does not equal $A \times B$ for any ideals A, B of \mathbb{Z}_{m} and \mathbb{Z}_{n} respectively. However, as an application of Theorem 4, we get a characterization of ideals in the ring $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ as follows:
Corollary 2. As a ring, the ideals of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ are precisely the sets

$$
J=u \mathbb{Z}_{m} \times v \mathbb{Z}_{n}
$$

where u and v are divisors of m and n respectively.
Proof. Let J be an ideal of \mathbb{Z}_{n}. If $J=\{(0,0)\}$, then $J=m \mathbb{Z}_{m} \times n \mathbb{Z}_{n}$. But, if J is non-zero, then since $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a principal ideal rings we have $J=(u, v) \mathbb{Z}_{m} \times \mathbb{Z}_{n}=$ $u \mathbb{Z}_{m} \times v \mathbb{Z}_{n}$ where $u=0$ or $u \mid m$; and $v=0$ or $v \mid n$ by Theorem 4 . Since $0 \mathbb{Z}_{t}=t \mathbb{Z}_{t}$, so $J=u \mathbb{Z}_{m} \times v \mathbb{Z}_{n}$ where u, v are divisors of m, n respectively.

In view of Corollary 2 and Corollary 1, we have the number of ideals of the ring $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ where the prime decompositions of $m=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and $n=q_{1}^{s_{1}} \cdots q_{t}^{s_{t}}$ is

$$
d(m) d(n)=\left(r_{1}+1\right) \cdots\left(r_{k}+1\right)\left(s_{1}+1\right) \cdots\left(s_{t}+1\right)
$$

But, for the semigroup $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ the result is completely different:
Theorem 5. The number of non-zero ideals in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ equals the number of the sets $\left\{\left(a_{1}, b_{1}\right), \cdots,\left(a_{k}, b_{k}\right)\right\}$ where $k \geq 1$ and $\left(a_{i}, b_{i}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ which satisfy (A1) (A4).
Proof. Let I be a non-zero ideals of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $I=\bigcup\left\{a_{i} \mathbb{Z}_{m} \times b_{i} \mathbb{Z}_{n}: i=1, \cdots, r\right\}$ $=\bigcup\left\{c_{j} \mathbb{Z}_{m} \times d_{j} \mathbb{Z}_{n}: j=1, \cdots, s\right\}$ where $\left(a_{i}, b_{i}\right)$ and $\left(c_{j}, d_{j}\right)$ satisfy (A1) - (A4). We aim to prove that $r=s$ and $\left\{\left(a_{1}, b_{1}\right), \cdots,\left(a_{r}, b_{r}\right)\right\}=\left\{\left(c_{1}, d_{1}\right), \cdots,\left(c_{s}, d_{s}\right)\right\}$. For convenience, let $B=\left\{\left(a_{1}, b_{1}\right), \cdots,\left(a_{r}, b_{r}\right)\right\}$ and $C=\left\{\left(c_{1}, d_{1}\right), \cdots,\left(c_{s}, d_{s}\right)\right\}$. First, we note that $\left(a_{1}, b_{1}\right) \in c_{\ell} \mathbb{Z}_{m} \times d_{\ell} \mathbb{Z}_{n}$ for some $\ell \in\{1, \cdots, s\}$ and $\left(c_{\ell}, d_{\ell}\right) \in a_{k} \mathbb{Z}_{m} \times$ $b_{k} \mathbb{Z}_{n}$ for some $k \in\{1, \cdots, r\}$, hence $a_{1}=c_{\ell} u, b_{1}=d_{\ell} v$ and $c_{\ell}=a_{k} x, d_{\ell}=b_{k} y$ for some $u, x \in \mathbb{Z}_{m}$ and $v, y \in \mathbb{Z}_{n}$, so $a_{1}=a_{k} x u$ and $b_{1}=b_{k} y v$. We claim that $\left(a_{1}, b_{1}\right)=\left(c_{\ell}, d_{\ell}\right)$. And, consider the ordered pairs $\left(a_{k}, b_{k}\right) \in B$ and $\left(c_{\ell}, d_{\ell}\right) \in C$ in the following cases:
Case 1. $a_{k}=0$. Then $c_{\ell}=a_{k} x=0 \cdot x=0=c_{\ell} u=a_{1}$ which implies $b_{1} \neq 0 \neq d_{\ell}$. From $a_{k}=0$, we must have $0 \neq b_{k} \mid n$ and thus $b_{k} \mid b_{1}$ (since $b_{1}=b_{k} y v$), so $b_{k}=b_{1}$ otherwise it will contradict to that B satisfies (A1) - A(4). Since $b_{1}=d_{\ell} v, d_{\ell}=b_{k} y$ and $d_{\ell}\left|n, b_{k}\right| n$, it follows that $d_{\ell} \mid b_{1}$ and $b_{1}=b_{k} \mid d_{\ell}$ and hence $b_{1}=d_{\ell}$.
Case 2. $b_{k}=0$. By using the same arguments as given in case 1 , but starting with $d_{\ell}=b_{k} y=0 \cdot y=0=d_{\ell} v=b_{1}$ and $a_{1}=a_{k} x u$ we get $a_{1}=c_{\ell}$.
Case 3. $c_{\ell}=0$. Then $a_{1}=c_{\ell} u=0 \cdot u=0=c_{\ell}$ which implies $b_{1} \neq 0 \neq d_{\ell}$. If $b_{k}=0$, then $d_{\ell}=b_{k} y=0 \cdot y=0=0 \cdot v=b_{1}$ which is a contradiction. So $b_{k} \mid n$, and since $d_{\ell}=b_{k} y$ we get $b_{k} \mid d_{\ell}$. Since $b_{1}=d_{\ell} v$ and $d_{\ell} \mid n$, so $d_{\ell} \mid b_{1}$. Thus $b_{k} \mid b_{1}$ and $0 \neq a_{k} \mid a_{1}$ and B satisfies (A4) imply $k=1$, hence $a_{k}=a_{1}$ and $b_{k}=b_{1}$. From $b_{1}=b_{k} \mid d_{\ell}$ and $d_{\ell} \mid b_{1}$, we get $b_{1}=d_{\ell}$.

Case 4. $d_{\ell}=0$. By using the same arguments as given in case 3 , but starting with $b_{1}=d_{\ell} v=0 \cdot v=0=d_{\ell}$ and consider a_{k} instead of b_{k} we find that $a_{1}=c_{\ell}$.
Case 5. $a_{k}, b_{k}, c_{\ell}, d_{\ell} \notin\{0\}$. Then $a_{k}\left|m, c_{\ell}\right| m$ and $b_{k}\left|n, d_{\ell}\right| n$. From $a_{1}=a_{k} x u, b_{1}=b_{k} y v$ and $a_{k}\left|m, b_{k}\right| n$, we get $a_{k} \mid a_{1}$ and $b_{k} \mid b_{1}$. Since $\left(a_{k}, b_{k}\right)$ and (a_{1}, b_{1}) satisfy (A4), so $k=1$, this means $a_{k}=a_{1}$ and $b_{k}=b_{1}$. Since $c_{\ell}=a_{k} x, a_{1}=c_{\ell} u$ and $a_{k}\left|m, c_{\ell}\right| m$, it follows that $a_{1}=a_{k} \mid c_{\ell}$ and $c_{\ell} \mid a_{1}$ which implies $a_{1}=c_{\ell}$. From $b_{1}=d_{\ell} v, d_{\ell}=b_{k} y$ and $d_{\ell}\left|n, b_{k}\right| n$, we get $d_{\ell} \mid b_{1}$ and $b_{1}=b_{k} \mid d_{\ell}$, so $b_{1}=d_{\ell}$.

Therefore, in each cases we get $\left(a_{1}, b_{1}\right)=\left(c_{\ell}, d_{\ell}\right)$. Similarly, we can prove that $\left\{\left(a_{2}, b_{2}\right), \cdots,\left(a_{r}, b_{r}\right)\right\} \subseteq\left\{\left(c_{1}, d_{1}\right), \cdots,\left(c_{s}, d_{s}\right)\right\}$ and hence $r \leq s$. Using the same arguments, but beginning with $\left(c_{1}, d_{1}\right)$ we find that $\left\{\left(c_{1}, d_{1}\right), \cdots,\left(c_{s}, d_{s}\right)\right\} \subseteq$ $\left\{\left(a_{1}, b_{1}\right), \cdots,\left(a_{r}, b_{r}\right)\right\}$, hence $s \leq r$ and so $s=r$ and the two sets are equal.

Acknowledgment. The authors would like to thank Professor R. P. Sullivan at University of Western Australia for his help in writing this paper.

References

[1] G. Ehrlich, Unit-regular ring, Portugaliae Math., 27(1968), 209-212.
[2] E. Hewitt and H. S. Zuckerman, The multiplicative semigroup of integers modulo m, Pacific J. Math., 10(1960), 1291-1308.
[3] E. Hewitt and H. S. Zuckerman, Finitely dimensional convolution algebras, Acta Math. 93(1955), 67-119.
[4] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
[5] T. M. Hungerford, Algebra, Spring-Verlag, Newyork, 2003.
[6] Y. Kemprasit and S. Buapradist, A note on the multiplicative semigroup \mathbb{Z}_{n} whose bi-ideals are quasi-ideals, Southeast Asian Bull. Math., Springer-Verlag 25(2001), 269-271.
[7] A. E. Livingston and M. L. Livingston, The congruence $a^{r+s} \equiv a^{r}(\bmod m)$, Amer. Math. Monthly, 85(1980), 811-814.
[8] W. Sierpinski, Elementary Theory of Numbers, PWN-Polish Scientific Publisher, Warszawa, 1988.
[9] H. S. Vandiver and M. W. Weaver, Introduction to arithmetic factorization and congruences from the standpoint of abstract algebra, Amer. Math. Monthly, 65(1958), 48-51.

[^0]: * Corresponding author.

 Received November 14, 2007; accepted 9 June 2008.
 2000 Mathematics Subject Classification: 20M12.
 Key words and phrases: ideals, integers modulo n, product semigroups.

