초록
본 논문에서는 퍼지 추론 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다 영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시 영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법 이 기존의 양자화를 적용한 방법보다 구름의 분석 성능이 개선된 것을 확인하였다.
In this paper, we proposed a method to analyze kind of clouds using a fuzzy reasoning method. In the proposed method, we used the clues that G channel value is dominant from RGB color values in land areas and B channel value is dominant in the sea areas discovered by the analyses of both visible images and infrared images. By these information, R and B channel values are applied to land areas and R and G channel values are applied to the sea areas. Noise areas(areas except cloud areas) are removed from a visible image and an infrared image by a threshold value, and then land areas and the sea areas are discriminated from the noise removed image. Cloud areas are extracted from discriminated areas using R, G, B channel values and a fuzzy reasoning method, and finally kind of clouds is decided by combining same cloud areas included in both the visible image and the infrared image. In comparison with a conventional quantization method, we verified that the performance of cloud analysis by the proposed method is more efficient through experiments.