3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System

  • Lee, Jae-Young (Department of Civil and Environmental Engineering, University of Central Florida) ;
  • Kang, Mee-A (Department of Environmental Engineering, Andong National University)
  • 발행 : 2009.06.30

초록

지표하 다공성매체에서 비정상상태의 유동을 해석하기 위한 종래의 수치적 모형들은 초기 건조한 토양으로의 강우로 인한 침투와 같은 한계적인 유입경계조건인 경우에 국지적 유동영역으로 인해 수치적 진동 및 불안정성을 초래한다. 이러한 경우 주로 공간적으로 세분된 격자와 작은 계산시간 간격을 요구하는데 이는 계산의 효율성을 떨어뜨린다. 따라서 본 연구에서는 유입 경계조건을 포함하는 비정상 상태의 지표하 유동해석을 위해 입자추적 알고리즘을 적용하여 불연속영역에서의 수치적 불안정성을 제거하고자 하였다. 즉, 수치적 안정성이 개선된 혼합 LE 유한요소기법을 제시하였다. 제시된 모형의 수치적 검증을 위해 비정상 균일 유동장과 불균일 유동장의 가상예제에 적용한 결과 해석해와 유사한 결과를 얻을 수 있었고 이를 토대로 함양 및 양수에 대한 3차원 가상유역 모의에 적용되었다. 본 연구에서 제시한 입자추적 알고리즘은 포화 및 불포화 다공성 매체의 유동을 보다 실질적으로 모의할 수 있으며 계산의 정확성 및 안정성에 크게 기여할 것으로 판단되었다.

The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

키워드

참고문헌

  1. Bensabat J., Zhou Q., and Bear J., 2000, An adaptive pathline-based particle tracking algorithm for the Eulerian-Lagrangian method, Advances in Water Resources, 23, 383-397 https://doi.org/10.1016/S0309-1708(99)00025-1
  2. Cheng, H. P., J. R. Cheng, and G.T. Yeh, 1996, A particle tracking technique for the Lagrangian-Eulerian finite element method in multi-dimensions', International J. Numerical Methods in Engineering in January, 39(7), 1115-1136 https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1115::AID-NME895>3.0.CO;2-4
  3. Cheng, J. R., H. P. Cheng, and G. T. Yeh, 1996, A Lagrangian-Eulerian Method with Adaptively Local Zooming and Peak/Valley Capturing Approach to Solve Two-Dimensional Advection-Diffusion Transport Equations', International J. of Numerical Methods in Engineering, 39(6), 987-1016 https://doi.org/10.1002/(SICI)1097-0207(19960330)39:6<987::AID-NME891>3.0.CO;2-V
  4. Lin, H. C., D. R. Richards, G. T. Yeh, J. R. Cheng, H. P. Cheng, and N. L. Jones, 1997, FEMWATER: A Three- Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media', Technical Report CHL- 97-12. U.S. Army Corps of Engineers
  5. Lu N. A., 1994, A semianalytical method of path line computation for transient finite difference groundwater flow models. Water Resources Research, 30(8), 2449-2459 https://doi.org/10.1029/94WR01219
  6. Pollock D. W., 1988, Semianalytical computation of path line for finite-difference models, Ground Water, 26(6), 743-750 https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
  7. Schafer-Perini A. L. and Wilson J. L., 1991, Efficient and accurate front tracking for two-dimensional groundwater flow models, Water Resources Research, 27, 1471-1485 https://doi.org/10.1029/91WR00720
  8. Suk, H., 2003, Development of 2-and 3-D Simulator for Three-Phase Flow with General Initial and Boundary Conditions on the Fractional Flow Approach, Ph.D. thesis, Dept. of Civil and Environmental Engineering. The Pennsylvania State University
  9. Yeh, G, T., H. P. Cheng, G. B. Huang, F. Zhang, H. C. Lin, E. Edris, and D. Richards, 2004, A Numerical Model of Flow, Heat Transfer, and Salinity, Sediment, and Water Quality Transport in Watershed Systems of 1-D Stream-River Network, 2-D Overland Regime, and 3-D Subsurface Media(WASH123D: Version 2.0)' Technical Report, U.S. Army Corps of Engineers
  10. Yeh, G. T. and Shan, H., 2003, BEST3D: A Bay and Estuary Model for Simulating Hydrodynamics and Thermal, Salinity, Sediment, and Water Quality Transport in 3-Dimensions. Technical Report. Dept. of Civil and Environmental Engineering, University of Central Florida
  11. Yeh, G. T., Sharp-Hansen, S., Leuter, B., Stroble, R., and Scarborough, J., 1992, 3DFEMWATER/3DFEMWASTE: Numerical codes for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, EPA/600/R-92/223
  12. Zhang, F., G. T. Yeh, J. C. Parker, and S. C. Brooks, 2005, Three Dimensional Reactive Chemical Transport Modeling in Groundwater of Watershed System, Computer and Geosciences