효소에 의한 실크 세리신의 가수분해와 항산화 효과

Enzymatic Hydrolysis of Silk Sericin and Its Anti-oxidative Effect

  • 이기훈 (서울대학교 바이오시스템.소재학부) ;
  • 김무곤 (서울대학교 바이오시스템.소재학부) ;
  • 오한진 (서울대학교 바이오시스템.소재학부) ;
  • 이지영 (서울대학교 바이오시스템.소재학부) ;
  • 이정용 (월드웨이(주) 생명공학연구소)
  • Lee, Ki-Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Kim, Moo-Kon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Oh, Han-Jin (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lee, Ji-Young (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lee, Jeong-Yong (WORLDWAY Research Institute of Bioscience & Biotechnology)
  • 발행 : 2009.06.30

초록

본 연구는 열수추출법에 의하여 추출한 세리신을 이용하여 단독 또는 2종의 효소를 이용하여 가수분해하고 그 가수분해물의 항산화 및 미백효과를 살펴본 것이다. 여러 산업용효소 중 세리신에 대한 분해효과가 우수한 alcalase, flavourzyme 및 protamex를 이용하여 분해한 결과 세리신의 분자량은 20 ${\sim}$ 30 kDa의 범위로 감소하였으며 사용한 효소별로 특이적 가수분해물이 나타났다. 세리신 가수분해물의 항산화능을 살펴본 결과 원래 세리신에 비하여 DPPH 소거율이 높게 나타났으며 flavourzyme과 protamex를 같이 사용한 경우 약 85 %의 소거율을 나타냈다. 티로시나아제의 활성억제 효과를 살펴본 경우에는 세리신 가수분해물이 오히려 더 낮은 억제효과를 나타내었으나 세리신 가수분해물의 분획을 실시하고 활성억제 효과를 살펴본 결과 F2와 P3의 분획이 상대적으로 우수한 억제 효과를 나타내었다.

In this study, we hydrolyzed hot-water extracted sericin with single or two enzymes and investigated anti-oxidative effect on DPPH free radical and inhibitory effect on tyrosinase activity of the sericin hydrolysates. Alcalase, flavourzyme, and protamex were effective in hydrolyzing sericin. Sericin was degraded into the range of 20 ${\sim}$ 30 kDa. The sericin hydrolysate was shown to have stronger antioxidant properties than the original sericin. In the case of flavourzyme and protamex combination, the scavenging effect of sericin hydrolysate on DPPH radical was increased up to about 85 %. However, the inhibitory effect on tyrosinase activity of enzymatic hydrolysates was lower than that of the original sericin. After fractionation of sericin hydrolysates, we found that F2 and P3 fraction has higher inhibitory effect on tyrosinase activity compared to other fractions.

키워드

참고문헌

  1. K. Sprague, The Bombyx mori silk proteins: characterization of large polypeptides, Biochemistry, 14(5), 925 (1975) https://doi.org/10.1021/bi00676a008
  2. T. Gamo, T. Inokuchi, and H. Laufer, Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori, Insect Biochem., 7(3), 285 (1977) https://doi.org/10.1016/0020-1790(77)90026-9
  3. Y. Takasu, H. Yamada, and K. Tsubouchi, Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori, Biosci. Biotech. Bioch., 66(12), 2715 (2002) https://doi.org/10.1271/bbb.66.2715
  4. K. Kato, S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, and M. Nomura, Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity, Biosci. Biotechnol. Biochem., 62(1), 145 (1998) https://doi.org/10.1271/bbb.62.145
  5. S. Zhaorigetu, N. Yanaka, M. Sasaki, H. Watanabe, and N. Kato, Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse, J. Photochem. Photobiol. B: Biol., 71(1-3), 11 (2003) https://doi.org/10.1016/S1011-1344(03)00092-7
  6. M. Sasaki, H. Yamada, and N. Kato, Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats, Nutr. Res., 20(9), 1505 (2000) https://doi.org/10.1016/S0271-5317(00)80031-7
  7. S. Zhaorigetu, M. Sasaki, H. Watanabe, and N. Kato, Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation, Biosci. Biotechnol. Biochem., 65(10), 2181 (2001) https://doi.org/10.1271/bbb.65.2181
  8. K. Tsujimoto, H. Takagi, M. Takahashi, H. Yamada, and S. Nakamori, Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin, J. Biochem., 129(6), 979 (2001) https://doi.org/10.1093/oxfordjournals.jbchem.a002946
  9. M. Takahashi, K. Tsujimoto, H. Yamada, H. Takagi, and S. Nakamori, The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture, Biotechnol. Lett., 25(21), 1805 (2003) https://doi.org/10.1023/A:1026284620236
  10. J. H. Kim and D. G. Bae, Hydrolysis characteristics and application of silk sericin; II. Characteristics of soluble sericin and its application on human skin, Korean J. Seric. Sci., 45(1), 58 (2003)
  11. J. H. Wu, Z. Wang, and S. Y. Xu, Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater, Process Biochemistry, 43(5), 480 (2008) https://doi.org/10.1016/j.procbio.2007.11.018
  12. R. J. Beynon, Proteolytic enzymes : a practical approach, eds. J. S. Bond, 38, Oxford University Press, England (1989)
  13. S. Sindayikengera and W. Xia, Nutritional evaluation of caseins and whey proteins and their hydrolysates from protamex, J. Zhejiang Univ. Sci. B, 7(2), 90 (2006) https://doi.org/10.1631/jzus.2006.B0090
  14. R. Marcuss, Antioxidative effect of amino acids, Nature, 186, 886 (1960) https://doi.org/10.1038/186886a0
  15. A. Anghileri, R. Lantto, K. Kruus, C. Arosio, and G. Freddi, Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates, J. Biotechnol., 127(3), 508 (2007) https://doi.org/10.1016/j.jbiotec.2006.07.021
  16. G. D. Kang, K. H. Lee, C. S. Ki, and Y. H. Park, Crosslinking reaction of phenolic side chains in silk fibroin by tyrosinase, Fiber. Polym., 5(3), 234 (2004) https://doi.org/10.1007/BF02903006