Effect of Curing Conditions of a Poly(4-vinylphenol) Gate Dielectric on the Performance of a Pentacene-based Thin Film Transistor

  • Hwang, Min-Kyu (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Lee, Hwa-Sung (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Jang, Yun-Seok (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Cho, Jeong-Ho (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Lee, Shic-Hoon (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Kim, Do-Hwan (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology) ;
  • Cho, Kil-Won (Department of Chemical Engineering / Polymer Research Institute, Pohang University and Science and Technology)
  • Published : 2009.06.25

Abstract

We improved the performance of pentacene-based thin film transistors by changing the curing environment of poly(4-vinylphenol) (PVP) gate dielectrics, while keeping the dielectric constant the same. The field-effect mobility of the pentacene TFTs constructed using the vacuum cured PVP was higher than that of the device based on the Ar flow cured gate dielectric, possibly due to the higher crystalline perfection of the pentacene films. The present results demonstrated that the curing conditions used can markedly affect the surface energy of polymer gate dielectrics, thereby affecting the field-effect mobility of TFTs based on those dielectrics.

Keywords

References

  1. D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, Appl. Phys. Lett., 74, 3302 (1999) https://doi.org/10.1063/1.123325
  2. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, J. Am. Chem. Soc., 130, 10556 (2008) https://doi.org/10.1021/ja800142t
  3. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, and T. Sakurai, Appl. Phys. Lett., 84, 3789 (2004) https://doi.org/10.1063/1.1739508
  4. D. Knipp, R. A. Street, A. V$\ddot{o}$lkel, and J. Ho, J. Appl. Phys., 93, 347 (2003) https://doi.org/10.1063/1.1525068
  5. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  6. D. H. Kim, H. S. Lee, H. Yang, L. Yang, and K. Cho, Adv. Funct. Mater., 18, 1363 (2008) https://doi.org/10.1002/adfm.200701019
  7. D. H. Kim, Y. D. Park, Y. Jang, H. Y. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. J. Park, T. H. Chang, C. H. Chang, M. K. Joo, C. Y. Ryu, and K. Cho, Adv. Func. Mater., 15, 77 (2005) https://doi.org/10.1002/adfm.200400054
  8. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett., 87, 152105 (2005) https://doi.org/10.1063/1.2093940
  9. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater., 16, 4543 (2004) https://doi.org/10.1021/cm049598q
  10. N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science, 299, 1881 (2003) https://doi.org/10.1126/science.1081279
  11. A. Facchetti, M.-H. Yoon, and T. J. Marks, Adv. Mater., 17, 1705 (2005) https://doi.org/10.1002/adma.200500517
  12. H. E. Katz, Chem. Mater., 16 4748 (2004) https://doi.org/10.1021/cm049781j
  13. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater., 3, 317 (2004) https://doi.org/10.1038/nmat1105
  14. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys., 92, 5259 (2002) https://doi.org/10.1063/1.1511826
  15. M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, Synth. Met., 137, 967 (2003) https://doi.org/10.1016/S0379-6779(02)00958-X
  16. Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, Appl. Phys. Lett., 90, 132104 (2007) https://doi.org/10.1063/1.2457776
  17. N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and Practice, Springer-Verlag, New York, 1993, Ch. 4 & 9
  18. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys., 80, 2501 (1996) https://doi.org/10.1063/1.363032
  19. B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L. C. Feldman, R. F. Haglund, and G. Scoles, Phys. Rev. B, 70, 125401 (2004) https://doi.org/10.1103/PhysRevB.70.125401
  20. B. Kim, D. Kim, J. Chung, Y. J. Kim, I. Seo, S. K. Kwon, and K. Song, Polymer(Korea), 30, 362 (2006)
  21. J. Y. Ha, S. J. Yoon, D. Y. Jeong, and Y. Cho, Macromol. Res., 15, 86 (2007) https://doi.org/10.1007/BF03218757
  22. H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, and K. Cho, Adv. Funct. Mater., 16, 1859 (2006) https://doi.org/10.1002/adfm.200500854