DOI QR코드

DOI QR Code

Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus via the addition of n-Dodecane as an Oxygen Vector

  • Liu, Long (School of Biotechnology, Jiangnan University) ;
  • Yang, Haiquan (School of Biotechnology, Jiangnan University) ;
  • Zhang, Dongxu (School of Biotechnology, Jiangnan University) ;
  • Du, Guocheng (School of Biotechnology, Jiangnan University) ;
  • Chen, Jian (Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ;
  • Wang, Miao (School of Food Science and Technology, Jiangnan University) ;
  • Sun, Jun (Institute of Information Technology, Jiangnan University)
  • Published : 2009.06.30

Abstract

This study aimed to examine the influence of adding an oxygen vector, n-dodecane, on hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus. Owing to the high viscosity of culture broth, microbial HA production during 8-16 h was limited by the oxygen transfer coefficient $K_La$, which could be enhanced by adding n-dodecane. With the addition of n-dodecane to the culture medium to a final concentration of 5% (v/v), the average value of $K_La$ during 8-16 h was increased to $36{\pm}2h^{-1}$, which was 3.6 times that of the control without n-dodecane addition. With the increased $K_La$ and dissolved oxygen (DO) by adding 5% (v/v) of n-dodecane, a 30% increase of HA production was observed compared with the control. Furthermore, the comparison of the oxygen mass transfer in the absence and presence of n-dodecane was conducted with two proposed mathematical models. The use of n-dodecane as an oxygen vector, as described in this paper, provides an efficient alternative for the optimization of other aerobic biopolymer productions, where $K_La$ is usually a limiting factor.

Keywords

References

  1. Amaral, P. F. F., M. G. Freire, M. H. M. Rocha-Leao, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho. 2008. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol. Bioeng. 99: 588-598 https://doi.org/10.1002/bit.21640
  2. Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  3. Cascaval, D., A. I. Galaction, E. Folescu, and M. Turnea. 2006. Comparative study on the effects of n-dodecane addition on oxygen transfer in stirred bioreactors for simulated, bacterial and yeasts broths. Biochem. Eng. J. 31: 56-66 https://doi.org/10.1016/j.bej.2006.05.019
  4. Chisti, Y. and U. J. Jauregui-Haza. 2002. Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem. Eng. J. 10:143-153 https://doi.org/10.1016/S1369-703X(01)00174-7
  5. Cleary, P. P. and A. Larkin. 1979. Hyaluronic acid capsule:Strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097
  6. Duan, X. J., L. Yang, X. Zhang, and W. S. Tan. 2008. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 18: 718-724
  7. Elibol, M. and F. Mavituna. 1999. A remedy to oxygen limitation problem in antibiotic production: Addition of perfluorocarbon. Biochem. Eng. J. 3: 1-7 https://doi.org/10.1016/S1369-703X(98)00036-9
  8. Esposito, E., E. Menegatti, and R. Cortesi. 2005. Hyaluronanbased microspheres as tools for drug delivery: A comparative study. Int. J. Pharm. 288: 35-49 https://doi.org/10.1016/j.ijpharm.2004.09.001
  9. Fong Chong, B., L. M. Blank, R. Mclaughlin, and L. K. Nielsen. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66: 341-351 https://doi.org/10.1007/s00253-004-1774-4
  10. Galaction, A. I., D. Cascaval, C. Oniscu, and M. Turner. 2004. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen vector 1. Simulated fermentation broths. Bioproc. Biosyst. Eng. 26: 231-238
  11. Galaction, A. I., D. Cascaval, M. Turner, and E. Folescu. 2005. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen vector 2. Propionibacterium shermanii broths. Bioproc. Biosyst. Eng. 27: 263-271 https://doi.org/10.1007/s00449-005-0416-2
  12. Garcia, O. F., C. E. Gomez, and V. E. Santos. 2000. Oxygen transfer and uptake rates during xanthan gum production. Enzyme. Microbiol. Tech. 27: 680-690 https://doi.org/10.1016/S0141-0229(00)00272-6
  13. Gotoh, T., G. Mochizuki, and K. I. Kikuchi. 2001. A novel column fermentor having a wetted-wall of perfluorocarbon as an oxygen carrier. Biochem. Eng. J. 8: 165-169 https://doi.org/10.1016/S1369-703X(01)00110-3
  14. Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe. 1999. Productivity of concentrated hyaluronic acid using maxblend fermentor. J. Biosci. Bioeng. 1: 68-71
  15. Hassan, I. T. M. and C. W. Robinson. 1977. Oxygen transfer in mechanically agitated aqueous systems containing dispersed hydrocarbon. Biotechnol. Bioeng. 19: 661-682 https://doi.org/10.1002/bit.260190505
  16. Kang, S. W., E. R. Cho, and B. S. Kim. 2005. PLGA microspheres in hyaluronic acid gel as a potential bulking agent for urologic and dermatologic injection therapies. J. Microbiol. Biotechnol. 15: 510-518
  17. Kogan, G., L. Soltes, R. Stern, and P. Gemeiner. 2007. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25 https://doi.org/10.1007/s10529-006-9219-z
  18. Lai, L. S. T., T. H. Tsai, and T. C. Wang. 2002. Application of oxygen vectors to Aspergillus terreus cultivation. J. Biosci. Bioeng. 94: 453-459 https://doi.org/10.1016/S1389-1723(02)80224-9
  19. Lapcik, L., S. De Smedt, J. Demeester, and P. Chabrecek. 1998. Hyaluronan: Preparation, structure, properties, and applications. Chem. Rev. 98: 2663-2684 https://doi.org/10.1021/cr941199z
  20. Liu, L., M. Wang, G. C. Du, and J. Chen. 2008. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Lett. Appl. Microbiol. 46:383-388 https://doi.org/10.1111/j.1472-765X.2008.02325.x
  21. Liu, L., M. Wang, G. C. Du, J. Chen, and J Sun. 2008. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus. Food Chem. 110: 923-926 https://doi.org/10.1016/j.foodchem.2008.02.082
  22. Liu, L., M. Wang, G. C. Du, J. Chen, and J. Sun. 2008. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresour. Technol. doi: 10.1016/jbiortech.2008.02.035
  23. Morra, M. 2005. Engineering of biomaterials surfaces by hyaluronan. Biomacromolecules. 6: 1205-1223 https://doi.org/10.1021/bm049346i
  24. Park, S. N., H. J. Lee, K. H. Lee, and H. Suh. 2003. Biological characterization of EDC crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24: 1631-1641 https://doi.org/10.1016/S0142-9612(02)00550-1
  25. Peyron, J. G. 1993. A new approach to the treatment of osteoarthritis: Viscosupplementation. Osteoarthr. Cartilage 1:85-87 https://doi.org/10.1016/S1063-4584(05)80022-6
  26. Rols, J. L., J. S. Condoret, C. Fonade, and G. Goma. 1990. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng. 35: 427-435 https://doi.org/10.1002/bit.260350410
  27. Silva, T. L. D., A. Mendes, R. L. Mendes, V. Calado, S. S. Alves, J. M. T. Vasconcelos, and A. Reis. 2006. Effect of ndodecane on Crypthecodinium cohnii fermentations and DHA production. J. Ind. Microbiol. Biotechnol. 33: 408-416 https://doi.org/10.1007/s10295-006-0081-8
  28. Van de Rijn, I. 1983. Streptococcal hyaluronic acid: Proposed mechanisms of degradation and loss of synthesis during stationary phase. J. Bacteriol. 156: 1059-1065
  29. Wang, J. L. 2000. Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen-vector. Process Biochem. 35: 1079-1083 https://doi.org/10.1016/S0032-9592(00)00142-4
  30. Wilhelm, E. and R. Battino. 1986. The solubility of gases in liquids. 17. The solubility of gases in carbon tetrachloride. Chem. Rev. 73: 214-220

Cited by

  1. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow vol.94, pp.2, 2012, https://doi.org/10.1007/s00253-011-3801-6
  2. The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes vol.102, pp.17, 2018, https://doi.org/10.1007/s00253-018-9194-z
  3. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis vol.115, pp.5, 2009, https://doi.org/10.1002/bit.26551