DOI QR코드

DOI QR Code

Gibberellin Production and Plant Growth Enhancement by Newly Isolated Strain of Scolecobasidium tshawytschae

  • Hamayun, Muhammad (School of Applied Biosciences, Kyungpook National University) ;
  • Khan, Sumera Afzal (Department of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Ho-Youn (School of Applied Biosciences, Kyungpook National University) ;
  • Chaudhary, Muhammad Fayyaz (Department of Biotechnology, Quaid-i-Azam University) ;
  • Hwang, Young-Hyun (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Dong-Hyun (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, In-Kyeom (Department of Pharmacology, Kyungpook National University School of Medicine) ;
  • Lee, Byung-Hyun (Division of Applied Life Science, (BK21 Program) Gyeongsang National University) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
  • Published : 2009.06.30

Abstract

We isolated nine endophytic fungi from the roots of salt-stressed soybean cultivar Daewonkong and screened them for growth-promoting secondary metabolites. Of all fungal isolates, P-4-3 induced maximum growth promotion of waito-c rice and soybean. Analysis of the culture filtrate of P-4-3 showed the presence of physiologically active gibberellins $GA_1$, $GA_3$, $GA_4$, and $GA_7$, along with physiologically inactive $GA_{15}$ and $GA_{24}$. The plant growth promotion and gibberellin-producing capacity of P-4-3 was much higher than wild-type Gibberella fujikuroi, which was taken as the control during the present study. The fungal isolate P-4-3 was identified as a new strain of Scolecobasidium tshawytschae through the morphological characteristics and phylogenetic analysis of 18S rDNA sequence. Gibberellins production and plant growth promoting ability of genus Scolecobasidium was reported for the first time in the present study.

Keywords

References

  1. Bayman, B., L. L. Lebron, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135: 143-149 https://doi.org/10.1046/j.1469-8137.1997.00618.x
  2. Carroll, G. C. 1986. The biology of endophytism in plants with particular reference to woody perennials, pp. 205-222. In N. J. Fokkema and J. Van Den Heuvel (eds.), Microbiology of the Phyllosphere Cambridge University Press, Cambridge, U.K
  3. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon, and J. G. Kim. 2005. Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15:22-28
  4. Cohen, J. D., B. G. Baldi, and J. P. Slovin. 1986. '3C6 [benzene ringJ-indole-3-acetic acid: A new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol. 80:14-19 https://doi.org/10.1104/pp.80.1.14
  5. Cohen, J. D., M. G. Bausher, K. Bialek, J. G. Buta, G. F. W. Gocal, L. M. Janzen, R. P. Pharis, A. N. Reed, and J. P. Slovin. 1987. Comparison of a commercial ELISA assay for indole-3-acetic acid at several stages of purification and analysis by gas chromatography-selected ion monitoring-mass spectrometry using a '3C6-labeled internal standard. Plant Physiol. 84: 982-986 https://doi.org/10.1104/pp.84.4.982
  6. Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J Nat. Prod. 60:52-60 https://doi.org/10.1021/np9604893
  7. Franck, C., J. Lammertyn, and B. Nicolaï. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, F. Mencarelli and P. Tonutti (eds.). Acta Hort. 682: 1991-1998
  8. Guo, L. D., K. D. Hyde, and E. C. Y. Liew. 2001. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol. Phylogenet. Evol. 20: 1-13 https://doi.org/10.1006/mpev.2001.0942
  9. Hao, C., X. Zhao, and P. Yang. 2007. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. Trends Anal. Chem. 26: 569-580 https://doi.org/10.1016/j.trac.2007.02.011
  10. Hasan, H. A. H. 2002. Gibberellin and auxin production by plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinn$'{a}$ V$'{y}$roba 48: 101-106
  11. Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67:371-376 https://doi.org/10.1128/AEM.67.1.371-376.2001
  12. Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590 https://doi.org/10.1271/bbb.70.583
  13. Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate speciesspecific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655
  14. Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyedra. J. Microbiol. Biotechnol. 11: 515-523
  15. Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011 https://doi.org/10.1104/pp.116.3.1003
  16. MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442 https://doi.org/10.1007/s003440010038
  17. Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant - three way symbioses required for thermal tolerance. Science 315: 513-515 https://doi.org/10.1126/science.1136237
  18. Mineo, L. 1990. Plant tissue culture techniques. Tested Studies in Laboratory Teachings Proc ABLE 11: 151-174
  19. Modess, O. 1941. Zur Kenntins der Mykorrhizabildner von Kiefer und Fichte. Symb. Bot. Upsal. 5: 1-146
  20. Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206
  21. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15: 809-814
  22. Schmelz, E. A., J. Engelberth, H. T. Alborn, P. O'Donnell, M. Sammons, H. Toshima, and J. H. Tumlinson. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. U.S.A. 100: 10552-10557 https://doi.org/10.1073/pnas.1633615100
  23. Schulz, B. and C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109: 661-686 https://doi.org/10.1017/S095375620500273X
  24. Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533 https://doi.org/10.1248/jhs.49.531
  25. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  26. Tudzunski, B. 1997. Fungal phytohormones in pathogenic and mutualistic associations, pp. 167-184. In The Mycota, Vol. V, Plant Relationship, Part A. Springer-Verlag, Berlin
  27. Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 7:65 https://doi.org/10.1186/1471-2229-7-65
  28. Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272 https://doi.org/10.1016/S0929-1393(00)00075-5
  29. Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience. 42: 43-50 https://doi.org/10.1007/BF02463974
  30. Yang, C. and S. Khuri. 2003. PTC: An interactive tool for phylogenetic tree construction, pp. 476-477. In: Proceedings of the IEEE Computer Society Bioinformatics Conference, August 2003. Stanford University

Cited by

  1. Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium) vol.20, pp.1, 2009, https://doi.org/10.4014/jmb.0905.05040
  2. Terpenoids from Endophytic Fungi vol.16, pp.12, 2011, https://doi.org/10.3390/molecules161210604
  3. Effects ofPenicilliumextracts on germination vigour in subsequent seedling growth of tomato (Solanum lycopersicumL.) vol.45, pp.8, 2009, https://doi.org/10.1080/03235408.2011.603965
  4. A new species of Scolecobasidium associated with the sooty blotch and flyspeck complex on banana from China vol.12, pp.3, 2013, https://doi.org/10.1007/s11557-012-0855-5
  5. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques vol.51, pp.1, 2009, https://doi.org/10.1007/s12275-013-2356-x
  6. Growth promotion effect ofFusariumspp. PPF1 from bermudagrass (Cynodon dactylon) rhizosphere on Indian spinach (Basella alba) seedlings are linked to root colonisation vol.47, pp.19, 2014, https://doi.org/10.1080/03235408.2013.876745
  7. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2009, https://doi.org/10.1007/s13199-014-0273-3
  8. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity vol.118, pp.2, 2009, https://doi.org/10.1111/jam.12696
  9. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance vol.35, pp.1, 2009, https://doi.org/10.3109/07388551.2013.800018
  10. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5040918
  11. Plant-fungal interactions: What triggers the fungi to switch among lifestyles? vol.42, pp.3, 2009, https://doi.org/10.3109/1040841x.2014.958052
  12. Synthesis of Biologically Active Gibberellins GA4 and GA7 by Microorganisms vol.81, pp.2, 2019, https://doi.org/10.15407/microbiolj81.02.090
  13. Transgenerational benefits of endophytes on resilience and antioxidant genes expressions in pea (Pisum sativum L.) under osmotic stress vol.42, pp.4, 2020, https://doi.org/10.1007/s11738-020-03042-y