DOI QR코드

DOI QR Code

자궁 재활치료를 위한 울트라-스캔 방식의 펄스형 레이저시스템

Pulsed Laser System of Ultra-scan Way for Uterus Rehabilitation Treatment

  • 김휘영 (동주대학 의료기공학과)
  • 발행 : 2009.06.28

초록

레이저 출력은 20w에서 100w까지 연속적으로 조절이 되고 노출시간은 0.01초에서 수초 사이로 조절이 가능 하다. 펄스동작은 레이저 빔을 주기적으로 차단할 수가 있고 슈퍼펄스는 0.1$\sim$1ms사이에서 방전을 이루어지며, 순간적인 레이저 출력은 5$\sim$10 까지 증가된다. 특히, 자궁암의 경우 자궁구 내벽에서 악성세포를 제거해야 하므로 펄스에 대한 튜브출력의 안정이 매우 중요하다. 따라서, 본 연구에서는 영전압 스위칭동작을 확보하여 컨버터 1 차측 주 회로에 고주파 변압기 누설인덕턴스($L_1$) 증가 및 직렬 인덕터 없이 안정된 소프트 스위칭 동작영역이 확보, 인덕터($L_f$)전류의 순환전류 경로차단 컨버터 1차측 주회로 스위칭소자와 고주파 변압기의 도통손실이 크게 줄어, 고주파 2차측 정류부($D_5,\;D_6$)도 소프트 스위칭 되고, 스위칭손실 흡수분을 부하로 회생할 수 있는 특징을 갖고, 튜브안정화가 되어 설계 및 제작하여 실험한 결과, 기존장비에 비해 10%의 향상된 결과를 가져왔고, 추후 시스템적으로 보완을 하면 우수한 결과가 될 것으로 사려 된다.

Laser output becomes output adjustment from 20 w to 100 w consecutively and time of exposure is available adjustment through water plant in 0.01 seconds. Pulse action can intercept laser beam periodically and supermarket pulse 0.1 $\sim$ between 1ms discharge consist and momentary laser output is increased to 5 $\sim$ 10. Specially, that must remove malignancy cell in womb nine escarps in the case of uterine cancer first of all stability of tube output about pulse by weight very, stable soft switching action area is defined without high frequency transformer leakage inductance ($L_1$) increase and additional series inductor insertion to converter the first main circuit securing zero voltage and marks of switching action in this research specially, because circulation current path of inductor ($L_f$) current is intercepted, converter the first main circuit switching component and spiritual enlightenment damage of high frequency transformer take decreasing greatly and high frequency the second stoppage department ($D_5,\;D_6$) becomes soft switching, and also, switching damage absorption quantity characteristic that can come to life again as subordinate have, and to become tube stabilization design and result that manufacture and experiment, brought result that improve of 10% than existing equipment, and if supplement as systematic late, it becomes thought to get into superior result.

키워드

참고문헌

  1. P. Loosen, "Recent Development of lasers for Materials Precessing," Proc of LAMP '92, Nagaoka, Vol.1, pp.61-66, 1992.
  2. J. K. R. Weber, J. J. Felten, and P. C. Nordine, "laser Hearth Melt Processing of Ceramic Materials," Rev. Sci. Instrum. 67, pp.522-524, 1996. https://doi.org/10.1063/1.1146631
  3. K. R. Rickwood and J. Mclnnes, High repetition rate mini TEA $CO_2$ laser using a semiconductor preionizer. Rev. Sci. Instrum. 4, pp.1667-1669, 1984.
  4. M. Katsumi Midorkawa, A 1kHz repetition- rate 500W $CO_2$ TEA laser employing solid-state pulse power conditioning. Meas. Sci. Technol 4, pp.388-391, 1993. https://doi.org/10.1088/0957-0233/4/3/020
  5. W. Koechner, Solid-State Laser Engineering. New York:Springer Verlag,, 1996
  6. D. H. Lee, H. J. Chung, and H. J. Kim. Comparison of dc and ac excitation of a sealed $CO_2$ laser. Rev Sci. Instrum. 71, pp.577-578, 2000. https://doi.org/10.1063/1.1150245
  7. S. Muller, J. Uhlenbusch. Influence of turbulence and convection on the output of a high-power $CO_2$ Laser with a fast axial flow. J. Phys. D: Appl. Phys. pp.697-708, 1987.
  8. J. J. Lowke. Predicted transport coefficients and operating characteristics of $CO_2-N_2-He$ laser mixtures. J.Appl.Phys, pp.4664-4671, 1973.
  9. A Cenian, Improvement of self- regeneration of gas mixtures in a convection-cooled 1.2kW $CO_2$ laser. J.Phys. D: Appl. Phys, pp. 1103-1110, 1997.
  10. W. Y. Kim, "The new type pulsed Nd:YAG laser power supply empolyed multi-amplification method," ACED-2000.
  11. V. E. Amassian, P. J. Maccabee, and R. Q. Cracco, "Focal stimulation of human peripheral nerve with the magnetic coil: A comparison with electrical stimulation," Experimental Neurology, Vol.103, pp.282-289, 1989. https://doi.org/10.1016/0014-4886(89)90052-6
  12. P. J. Basser, R. Wijesinghe, and B. J. Roth, "The activation function for magnetic stimulation derived from a three-dimensional volume conductor model," IEEE Trans. Biomed. Eng., Vol. 39, pp.1207-1210, 1992 https://doi.org/10.1109/10.168686
  13. W. F. Krupke, "Lasers and Electro-Optics Europe, 2000. Conference Digest. 2000(9).
  14. H. Shimizu, K. Kumada, S. Uchiyana, and A. Kasukawa, "High-performance CW 1.26-${\mu}m$ GaInNAsSb-SQW ridge lasers," Selected Topics in Quantum Electronics, IEEE Journal of Vol.7, Issue 2, pp.355-364, 2001(3-4). https://doi.org/10.1109/2944.954150
  15. K. Nakayama, M. Tomimoto, K. Muraoka, S. Okajima, K. Kawahata, K. Tanaka, T. Tokuzawa, and T. Akiyama, "Multiline FIR lasers by two wavelength cw CO2 laser pumping Infrared and Millimeter Waves," IRMMW-THz. Joint 32nd International Conference. pp.522-523, 2007(9).
  16. S. Knoke, G. Hollemann, M. Nickel, H. Voelckel, "Frequency doubled Nd:YVO4 thin disk laser with 30% diode-to-green efficiency," Technical Digest. Summaries of papers presented at the Conference. pp.388-389, 2001.
  17. F. Hegeler, M. Friedman, T. Albert, J. Parish, M. C. Myers, M. F. Wollbrd, J. L. Giuliani, J. D. Sethian, P. Burns, and R. Jaynes, "The Electra KrF Laser System Pulsed Power Plasma Science," Conference Record - Abstracts. IEEE. pp.862-862, 2007. https://doi.org/10.1109/PPPS.2007.4346168
  18. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, A. Y. Cho, "Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers Quantum Electronics," IEEE Journal of Vol.38, Issue 6. pp.569-581, 2002. https://doi.org/10.1109/JQE.2002.1005407
  19. M. H. Hu, L. Xingsheng, C. Caneau, L. Yabo, R. Bhat, S. Kechang, C. E. Zah, "Testing of high-power semiconductor laser bars," Lightwave Technology, Journal of Vol.23, Issue 2. pp.573-581, 2005. https://doi.org/10.1109/JLT.2004.842304