DOI QR코드

DOI QR Code

Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites

  • Park, Young-Soo (Department of Polymer-nano Science and Technology, Chonbuk National University) ;
  • Huh, Mong-Young (Department of Polymer-nano Science and Technology, Chonbuk National University) ;
  • Kang, Sin-Jae (Department of Mechanical Design Engineering, Chonbuk National University) ;
  • Yun, Seok-Il (Nano Material Department, Jeonju Institute of Machinery and Carbon Composites) ;
  • Ahn, Kay-Hyeok (Nano Material Department, Jeonju Institute of Machinery and Carbon Composites)
  • Received : 2009.11.05
  • Accepted : 2009.12.18
  • Published : 2009.12.30

Abstract

We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.

Keywords

References

  1. Seyhan, A.; Gojny, F.; Tanoglu, M.; Schulte, K. Euro. Polymer. J. 2007, 43, 374. https://doi.org/10.1016/j.eurpolymj.2006.11.018
  2. Li, Y.; Shimizu, H. Polymer 2007, 48, 2203. https://doi.org/10.1016/j.polymer.2007.02.066
  3. Kanagaraj, S.; Varandaa, F.; Zhiltsova, T.; Oliveiraa, M.; Simoesa, J. Comp. Sci. Tech. 2007, 67, 3071. https://doi.org/10.1016/j.compscitech.2007.04.024
  4. McIntosh, D.; Khabashesku, V.; Barrera, E. J. Phys. Chem. C, 2007, 111, 1592. https://doi.org/10.1021/jp065399d
  5. Zhanga, C.; Nib, Q.; Fud, S.; Kurashikia, K. Comp. Sci. Tech. 2007, 67, 2973 https://doi.org/10.1016/j.compscitech.2007.05.011
  6. Treacy, M.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678. https://doi.org/10.1038/381678a0
  7. Dai, H.; Wong, E. W.; Lieber, C. M. Science 1996, 272, 523. https://doi.org/10.1126/science.272.5261.523
  8. Wong, E.; Sheehan, P.; Lieber, C. Science 1997, 277, 1971. https://doi.org/10.1126/science.277.5334.1971
  9. Poncharal, P.; Wang, Z.; Ugarte, D.; Deheer, W. Science 1999, 283, 1513. https://doi.org/10.1126/science.283.5407.1513
  10. Sui, G.; Zhong, W.; Yang, X.; Zhao, S. Macromol. Mater. Eng. 2007, 292, 1020. https://doi.org/10.1002/mame.200700126
  11. Sui, G.; Zhong, W. H.; Yang, X. P.; Yu, Y. H. Mater. Sci. Eng. A 2008, 485, 524. https://doi.org/10.1016/j.msea.2007.09.007
  12. Kueseng, K.; Jacob, K. I. Eur. Polymer. J. 2007, 42, 220.
  13. Lopez, M. A.; Biagiotti, J.; Valentini, L.; Kenny, J. M. J. Appl. Polymer. Sci. 2006, 92, 3394.
  14. Zhong, W.; Li, J.; Lukehart, C.; Xu, L. Polymer. Nanocomposites. 2006, 26, 128.
  15. Bhattacharyyaa, S.; Sinturela, C.; Bahloula, O.; Saboungia, M.; Thomasb, S.; Salvetata, J. Carbon 2008, 46, 1037. https://doi.org/10.1016/j.carbon.2008.03.011

Cited by

  1. Carbon nanotube-reinforced elastomeric nanocomposites: a review vol.6, pp.4, 2015, https://doi.org/10.1080/19475411.2015.1121632
  2. DYNAMIC PROPERTIES AND TIRE PERFORMANCES OF COMPOSITES FILLED WITH CARBON NANOTUBES vol.91, pp.3, 2018, https://doi.org/10.5254/rct.18.82599