DOI QR코드

DOI QR Code

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun (Terminal Ballistics Research Laboratory, (TBRL), Defence Research & Development Organisation (DRDO), Ministry of Defence, Explosive Division) ;
  • Lal, Darshan (Defence Materials & Stores Research & Development Establishment, DMSRDE)
  • Received : 2009.04.04
  • Accepted : 2009.07.19
  • Published : 2009.09.30

Abstract

Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Keywords

References

  1. Yenisoy-Karakas, S. S.; Aygun, A.; Gunes, M.; Tahtasakal, E. Carbon 2004, 42, 477. https://doi.org/10.1016/j.carbon.2003.11.019
  2. Bansal, R. C.; Donnet, J. B.; Strekli, H. F. "Activated Carbon", Marcel Dekker, New York, 1988.
  3. El-Geundi, M. S. Adsorp. Sci. Technol. 1977, 15, 777.
  4. Rodriguez-Reinoso, F.; Marsh, H.; Heintz, E. A. (Editors), "Introduction to Carbon Technologies, Handbook", University of Alicante, Spain, 1997, 35.
  5. Cheremisinoff, P. M.; Ellerbusch, C. "Carbon Adsorption Handbook", Am Arbor Sci., Ann Arbor, 1978.
  6. Teng, H.; Wang, S. C. Ind. Eng. Chem. Res. 2000, 39, 673. https://doi.org/10.1021/ie990473i
  7. Guo, J.; Lua, C. Microporous Mesoporous Mater. 1999, 32, 111. https://doi.org/10.1016/S1387-1811(99)00096-7
  8. Linares-Castello, D.; Lillo-Rodenas, M. A.; Cazorla-Amoros; Linarres-Solano A. Carbon 2001, 39, 741. https://doi.org/10.1016/S0008-6223(00)00185-8
  9. Gavalas, G. R. "Coal Pyrolysis", Elsevier Scientific Publishing, Amsterdam, 1982.
  10. Mahajan, O. P.; Walker, P. L. "Analytical Methods for Coal and Coal Porducts", Vol II. Academic Press, New York 1978.
  11. Marcilla, A.; Asensio, M.; Martin-Gullon, I. Carbon 1996, 34, 449. https://doi.org/10.1016/0008-6223(95)00181-6
  12. Yun, C. H.; Park, Y. H.; Park, C. R. Carbon 2001, 39, 559. https://doi.org/10.1016/S0008-6223(00)00163-9
  13. Sun, J.; Wu, K.; Wang, Q. J. Appli. Poly Sci. 2005, 97, 2155. https://doi.org/10.1002/app.21955
  14. Teng, H.; Wang, S. C. Carbon 2000, 38, 817. https://doi.org/10.1016/S0008-6223(99)00160-8
  15. Lin, C. C.; Teng, H. Ind. Eng. Chem. Res. 2002, 41, 1986. https://doi.org/10.1021/ie010610n
  16. Yang, J. B.; Ling, C.; Liu, L.; Kang, F. Y.; Huang, Z. H.; Wu, H. Carbon 2002, 40, 911. https://doi.org/10.1016/S0008-6223(01)00222-6
  17. Cai, Q.; Huang, Z. H.; Kang, F.; Yang, J. B. Carbon 2004, 42, 775. https://doi.org/10.1016/j.carbon.2004.01.042
  18. Aggrawal, D.; Lal, D.; Tripathi, V. S.; Muthur , G. N. Carbon Science 2003, 4, 57.
  19. Gurudatt, K.; Tripathi, V. S. Carbon 1998, 36, 1371. https://doi.org/10.1016/S0008-6223(98)00124-9
  20. Singh, G. S.; Lal , D.; Tripathi, V. S. Chrom. A 2004, 1036, 189. https://doi.org/10.1016/j.chroma.2004.03.008
  21. Kaneko, K.; Ishii, C.; Ruike, M, H. Carbon 1992, 30, 1075. https://doi.org/10.1016/0008-6223(92)90139-N
  22. Nakimizo, M.; Kammereck, R. Carbon 1974; 12; 259. https://doi.org/10.1016/0008-6223(74)90068-2
  23. Jawahari, T.; Roid, A.; Casada, J. Carbon 1995, 53, 1126.
  24. Ku, H. H.; Kuuo, W. S.; Hu, C. H. J. Appl. Polym. Sci. 2001, 81,1090. https://doi.org/10.1002/app.1531
  25. Dippel, B.; Heintzenberg, J. J. Aerosol Sci. 1999, 30, 907. https://doi.org/10.1016/S0021-8502(99)80464-9
  26. Singh, A.; Lal, D. J. Appl. Poly. Sci. 2006, 100, 2323. https://doi.org/10.1002/app.22995
  27. Gregg, S.; Sing K. S. W. "Adsorption, Surface Area and Porosity", London, Academic Press 1982, 42.
  28. Gregg, S.; Sing K. S. W. "Adsorption, Surface area and Porosity", London, Academic Press 1982, 195.
  29. Freeman, J. J.; Gimblett, F. G. R.; Sing, K. C. W. Carbon 1989, 27, 7.
  30. Tenniisn, S. R. Appl. Catal. 1998, 173, 189.
  31. Dubinin, M. M. Carbon 1998, 27, 457.
  32. Sadezky, A.; Muchenhubar, H.; Grothe, H; Niessener, R. Carbon 2005, 43, 173.
  33. Tuinstra, F, F.; Koenig, J. L. J. Chem Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
  34. Lespade, P.; Marchand, A.; Couzi, M.; Cruege. F. Carbon 1964, 22, 375. https://doi.org/10.1016/0008-6223(84)90009-5
  35. Teng, T. H.; Ho, J. A.; Hsu, Y-T. Carbon 1997, 35, 275. https://doi.org/10.1016/S0008-6223(96)00137-6
  36. Teng, H.; Yeh, T. Ind. Chem. Res. 1998, 27, 58.