DOI QR코드

DOI QR Code

Standardization Trends for Carbon Nanotubes

  • Oh, Kyung-Hui (Materials & Nanotechnology Standards Division, Korean Agency for Technology & Standards, Ministry of Knowledge Economy)
  • Received : 2009.02.17
  • Accepted : 2009.03.14
  • Published : 2009.03.30

Abstract

In this work, standardization trends related carbon nanotubes and international standardization activities in the ISO/TC229 and IEC/TC113 were introduced. The movement toward development of carbon nanotube standard began in the nanotechnology council under the IEEE in 2005. KATS has also run the carbon nanotube standardization committee to support commercialization of product containing carbon nanotube through standards since 2004. The Korean Standards such as KSD2711, 2712, 2717 were established.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Dresselhaus, M.; Dresselhaus, G.; Saito, R. Carbon 1995, 33, 883. https://doi.org/10.1016/0008-6223(95)00017-8
  3. Mintmire J.; White, C. Carbon 1995, 33, 893. https://doi.org/10.1016/0008-6223(95)00018-9
  4. Lee J. M.; Kim J.W.; Lim J. S.; Kim T. J.; Kim S. D.; Park S.J.; Lee Y. S. Carbon Lett. 2007, 8, 120. https://doi.org/10.5714/CL.2007.8.2.120
  5. Sharon, M.; Datta, S.; Shah, M.; Sharon, M. W.; Soga, T.; Afre, R. A. Carbon Lett. 2007, 8, 184. https://doi.org/10.5714/CL.2007.8.3.184
  6. Sharon, M.; Rusop, M.; Soga, T.; Afre R. A. Carbon Lett. 2008, 9, 17. https://doi.org/10.5714/CL.2008.9.1.017
  7. MacKenzie, K.; Dunens, O.; Harris, A. T. Sep. Purf. Technol. 2009, in press.
  8. Vairavapandian, D.; Vichchulada, P.; Lay, M. D. Anal. Chim. Acta, 2008, 626, 119. https://doi.org/10.1016/j.aca.2008.07.052
  9. Agui, L.; Yanez-Sedeno, P.; Pingarron, J. M. Anal. Chim. Acta 2008, 622, 11. https://doi.org/10.1016/j.aca.2008.05.070
  10. Li, C.; Thostenson, E. T.; Chou, T. W. Comp. Sci. Technol. 2008, 68, 1227. https://doi.org/10.1016/j.compscitech.2008.01.006
  11. Thostenson, E.; Ren, Z.; Chou, T. Comp. Sci. Technol. 2001, 61, 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  12. Amelinckx, S.; Lucas, A.; Lambin, P.; Rep. Prog. Phys. 1999, 62, 1471. https://doi.org/10.1088/0034-4885/62/11/201
  13. Murakami, Y.; Miyauchi, Y.; Chiashi, S.; Maruyama, S. Chem. Phys. Lett. 2003, 377, 49. https://doi.org/10.1016/S0009-2614(03)01094-7
  14. Saito, R.; Dresselhaus, G.; Dresselhaus, M. Phys. Rev. B 2000, 6, 2981.
  15. Jeong, S. Y.; Lim, S. C.; Bae, D. J.; Lee, Y. H.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Cha, O. H.; Jeong, M. S.; Perello, D.; Yun, M. H. Appl. Phys. Lett. 2008, 92, 243103. https://doi.org/10.1063/1.2944813
  16. Park, Y.; Kim, G.; Lee, Y. H. Appl. Phys. Lett. 2008, 92, 083108. https://doi.org/10.1063/1.2838732

Cited by

  1. Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes - vol.10, pp.4, 2009, https://doi.org/10.5714/CL.2009.10.4.300
  2. Carbon nanotube-based environmental technologies: the adopted properties, primary mechanisms, and challenges vol.17, pp.3, 2018, https://doi.org/10.1007/s11157-018-9468-z