DOI QR코드

DOI QR Code

Study on Poling of LiNbO3 Fiber Single Crystals

LiNbO3 섬유 단결정의 분극에 관한 연구

  • Kang, Bong-Hoon (Department of Visual Optics, Far East University) ;
  • Jang, Jae-Hyuk (Division of Materials Science & Engineering, Hanyang University) ;
  • Choi, Duck-Kyun (Division of Materials Science & Engineering, Hanyang University) ;
  • Shin, Tae-Hee (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Joo, Gi-Tae (Materials Science & Technology Research Division, Korea Institute of Science and Technology)
  • 강봉훈 (극동대학교 안경광학과) ;
  • 장재혁 (한양대학교 신소재공학부) ;
  • 최덕균 (한양대학교 신소재공학부) ;
  • 신태희 (한국과학기술연구원 재료기술연구본부) ;
  • 주기태 (한국과학기술연구원 재료기술연구본부)
  • Published : 2009.07.31

Abstract

Congruent or stoichiometric $LiNbO_3$ fiber single crystals were grown by the $\mu$-PD method, and the grown fiber crystals have the several (2 or 3) ridges with a diameter of $1.35{\sim}1.5\;mm$ and a length of $40{\sim}100\;mm$. In this $\mu$-PD process, different growth rates ($10{\sim}60\;mm/h$) were applied. Pt wire or $LiNbO_3$ crystal was used as a seed. The properties of grown $LiNbO_3$ fiber single crystals having a-axis or c-axis according to seeds were effected by the grown conditions(Pt tube diameter, pulling speed, after heater etc.). Disk-type $LiNbO_3$ samples were poled in condition of DC 5 V/cm at 1050, 1075 or $1100^{\circ}C$. XRD, SEM, conoscope image through the polarized microscope, $T_C$ measuring apparatus, optical transmittance measuring instrument are used to identify the properties of $LiNbO_3$.

Keywords

References

  1. G. A. Magel, M. M. Fejer, and R. L. Byer, 'Quasi-phasematched Second-harmonic Generation of Blue Light in Periodically Poled $LiNbO_3$,' Appl. Phys. Lett., 56 108-10 (1990) https://doi.org/10.1063/1.103276
  2. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, 'Periodically Poled $LiNbO_3$ for High-efficiency Second- Harmonic Generation,' Appl. Phys. Lett., 59 2657-59 (1991) https://doi.org/10.1063/1.105929
  3. M. M. Fejer, G. A. Magel. D. H. Jundt, and L. Byer,'Quasiphase-matched Second Harmonic Generation: Tuning and Tolerances,' IEEE J. Quantum Electron., 28 2631-54 (1992) https://doi.org/10.1109/3.161322
  4. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, '42%-efficient Single-pass Cw Second-harmonic Generation in Periodically Poled Lithium Niobate,' Opt. Lett., 22 1834-36 (1997) https://doi.org/10.1364/OL.22.001834
  5. C. A. Burrus and J. Stone, 'Single-crystal Fiber Optical Devices: A Nd:YAG Fiber Laser,' Appl. Phys. Lett., 26 318-20 (1975) https://doi.org/10.1063/1.88172
  6. R. S. Feigelson, Crystal Growth of Electronic Materials, p. 217, E. Kaldis, North-Holland, Amsterdam, 1985
  7. J. L Stevenson and R. B. Dyott, 'Optical-fibre Waveguide with a Single-crystal Core,' Electron. Lett., 10 449-50 (1974) https://doi.org/10.1049/el:19740356
  8. H. P. Weber, P. F. Liao, B. C. Tofield, and P. M. Bridenbaugh, 'Cw Fiber Laser of NdLa Pentaphosphate,' Appl. Phys. Lett., 26 692-94 (1975) https://doi.org/10.1063/1.88038
  9. Y. Mimura, Y, Okamura, Y. Komazawa, and C. Ota, 'Growth of Fiber Crystals for Infrared Optical Waveguides,' Jpn. J. Appl. Phys., 19 L269-72 (1980) https://doi.org/10.1143/JJAP.19.L269
  10. T. J. Bridges, J. S. Hasiak, and A. R. Strnad, 'Single-crystal AgBr Infrared Optical Fibers,' Opt. Lett., 5, 85-7 (1980) https://doi.org/10.1364/OL.5.000085
  11. R. S. Feigelson, 'Pulling Optical Fibers,' J. Crystal Growth, 79 669-80 (1986) https://doi.org/10.1016/0022-0248(86)90535-X
  12. D. H. Yoon, I. Yonenage, T. Fukuda, and N. Dhnishi, 'Crystal Growth of Dislocation-free $LiNbO_3$ Single Crystals by Micro Pulling Down Method,' J. Crystal Growth, 142 339-43 (1994) https://doi.org/10.1016/0022-0248(94)90342-5
  13. C. Garratt, "Nonlinear Optics, Anharmonic Oscillators, and Pyroelectricity," IEEE J. Quantum Electron., 4 70-84 (1968) https://doi.org/10.1109/JQE.1968.1075030
  14. J. G. Bergman and G. R. Grane, 'Structural Aspects of Nonlinear Optics: Optical Properties of $KIO_2F_2$ and its Related Iodates,' J. Chem. Phys., 60 2470-74 (1974) https://doi.org/10.1063/1.1681384
  15. K. Sugii, H. Iwasaki, S. Miyazawa, and N. Niizeki, 'An Xray Topographic Study on Lithium Niobate Single Crystals,' J. Crystal Growth, 18 159-66 (1973) https://doi.org/10.1016/0022-0248(73)90194-2
  16. A. V. Shubnikov, Principle of Optical Crystallography, pp. 242-68, Chap. 10. Consultants Bureau, New York, 1960
  17. S. Miyazawa and H. Iwasaki, 'Congruent Melting Composition of Lithium Metatantalate,' J. Crystal Growth, 10 276-78 (1973) https://doi.org/10.1016/0022-0248(71)90195-3
  18. P. F. Bordui and R. G. Norwood, D. H. Jundt, and M. M. Fejer, 'Preparation and Characterization of Off-congruent Lithium Niobate Crystals,; J. Appl. Phys., 71 875-79 (1992) https://doi.org/10.1063/1.351308
  19. K. Nassau and M. E. Lines, 'Stacking-Fault Model for Stoichiometry Deviations in $LiNbO_3$ and $LiTaO_3$ and the Effect on the Curie Temperature,' J. Appl. Phys., 41 533-37 (1970) https://doi.org/10.1063/1.1658708
  20. K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric Lithium Niobate. 2. Preparation of Single Domain Crystals," J. Phys. Chem. Solid, 27 989-96 (1996) https://doi.org/10.1016/0022-3697(66)90071-0