DOI QR코드

DOI QR Code

Fibronectin Induces Pro-MMP-2 Activation and Enhances Invasion in H-Ras-Transformed Human Breast Epithelial Cells

  • Kim, Jong-Sook (College of Pharmacy, Duksung Women's University) ;
  • Moon, A-Ree (College of Pharmacy, Duksung Women's University)
  • Published : 2009.07.31

Abstract

Interactions between tumor cells and the extracellular matrix (ECM) strongly influence tumor development, affecting cell survival, proliferation and migration. Fibronectin, a major component of ECM, has been shown to interact with integrins especially the ${\alpha}5{\beta}1$ integrin. Cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs) which are capable of digesting the different components of the ECM and basement membrane. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated, resulting the 62 kDa active MMP-2. In this study, we investigated the effect of fibronectin on activation of pro-MMP-2 and the cellular invasiveness in H-Ras-transformed MCF10A human breast epithelial cells. Here we show that fibronectin induces activation of pro-MMP-2 and up-regulation of MT1-MMP and TIMP-2 in H-Ras MCF10A cells. These results demonstrate that H-Ras MCF10A cells secrete high levels of active MMP-2 when cultured with fibronectin, suggesting a possible interaction between the ECM network and H-Ras MCF10A cells to generate active MMP-2 which is important for proteolysis and ECM remodeling. Invasive and migratory abilities of H-Ras MCF10A cells were enhanced by fibronectin. Fibronectin up-regulated the expression of ${\beta}1$ integrin which may play a role in cellular responses exerted by fibronectin. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, this study provides a mechanism for the cell surface-matrix degrading effect of fibronectin which will be crucial to breast cell invasion and migration.

Keywords

References

  1. Akiyama, S. K., Olden, K. and Yamada, K. M. (1995). Fibronectin and integrins in invasion and metastasis. Cancer Metastasis. Rev. 14, 173-189 https://doi.org/10.1007/BF00690290
  2. Arihiro, K., Inai, K., Kurihara, K., Takeda, S. and Kaneko, M. (1993). Distribution of laminin, type IV collagen and fibronectin in the invasive component of breast carcinoma. Acta. Pathol. Jpn. 43, 758-764 https://doi.org/10.1111/j.1440-1827.1993.tb02563.x
  3. Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T. and Fa.ssler, R. (2002). Integrins in invasive growth. J. Clin. Invest. 109, 999-1006 https://doi.org/10.1172/JCI15468
  4. Clair, T., Miller, W. and Cho-Chung, Y. (1987). Prognostic significance of the expression of the ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res. 49, 5290-5293
  5. Clark, G. J. and Der, C. J. (1995). Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat. 35, 133-144 https://doi.org/10.1007/BF00694753
  6. Curran, S. and Murray, G. I. (1999). Matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 189, 300-308 https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
  7. Danen, E. H. P., Sonneveld, P., Brakebusch, C., Fassler, R. and Sonnenberg, A. (2002). The fibronectin-binding integrins ${\alpha}5$ ${\beta}1$ and ${\alpha}v{\beta}3$ differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159, 1071-1086 https://doi.org/10.1083/jcb.200205014
  8. Das, S., Banerji, A., Frei, E. and Chatterjee, A. (2008). Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibro nectin in serum free medium. Life Sciences 82, 467-476 https://doi.org/10.1016/j.lfs.2007.12.013
  9. Ding, J., Li, D., Wang, X., Wang, C. and Wu, T. (2008). Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology. 55, 2072-2076
  10. Enam, S. A., Rosenblum, M. L. and Edvardsen, K. (1998). Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectin-positive mesenchymal cell processes. Neurosurg. 42, 599-608 https://doi.org/10.1097/00006123-199803000-00030
  11. Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis. Cancer Res. 50, 6130-6138
  12. Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S. and He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc. Natl. Acad. Sci. USA. 86, 8207-8211 https://doi.org/10.1073/pnas.86.21.8207
  13. Hernandez-Barrantes, S., Toth, M., Bernardo, M. M., Yurkova, M., Gervasi, D. C., Raz, Y., Sang, Q. A. and Fridman, R. (2000). Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J. Biol. Chem. 275, 12080-12089. https://doi.org/10.1074/jbc.275.16.12080
  14. Ito, H., Duxbury, M., Benoit, E., Farivar, R. S., Gardner-Thorpe, J., Zinner, M. J., Ashley, S. W. and Whang, E. E. (2004). Fibronectin-induced COX-2 mediates MMP-2 expression and invasiveness of rhabdomyosarcoma. Biochem. Biophys. Res. Commun. 318, 594-600 https://doi.org/10.1016/j.bbrc.2004.04.070
  15. Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., Aoki, T. and Seiki, M. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J. 20, 4782-4793 https://doi.org/10.1093/emboj/20.17.4782
  16. Juliano, R. L. (2002). Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42, 283-323 https://doi.org/10.1146/annurev.pharmtox.42.090401.151133
  17. Kaspar, M., Zardi, U. and Neri, D. (2006). Fibronectin as target for tumor therapy. Int. J. Cancer. 118, 1331-1339 https://doi.org/10.1002/ijc.21677
  18. Kim, I. Y., Jeong, S. J., Kim, E. S., Kim, S. H. and Moon, A. (2007). Type I collagen-induced pro-MMP-2 activation is differentially regulated by H-Ras and N-Ras in breast epithelial cells. J. Biochen. Mol. Biol. 40, 825-831 https://doi.org/10.5483/BMBRep.2007.40.5.825
  19. Kim, M. S., Lee, E. J., Choi kim, H. R. and Moon, A. (2003). p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell. Cancer Res. 63, 5454-5461
  20. Kleiner, D. E. and Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 43, 42-51 https://doi.org/10.1007/s002800051097
  21. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, J., Foltz, C. M. and Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67-68 https://doi.org/10.1038/284067a0
  22. Moon, A., Kim, M. S., Kim, T. G., Kim, S. H., Kim, H. E., Chen, Y. Q. and Choi Kim, H. R. (2000). H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int. J. Cancer 85, 176-181 https://doi.org/10.1002/(SICI)1097-0215(20000115)85:2<176::AID-IJC5>3.0.CO;2-E
  23. Munshi, H. and Stack, M. S. (2006). Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev. 25, 45-56 https://doi.org/10.1007/s10555-006-7888-7
  24. Ohnishi, T., Hiraga, S., Izumoto, S., Matsumura, H., Kanemura, Y., Arita, N. and Hayakawa, T. (1998). Role of fibronectinstimulated tumor cell migration in glioma invasion in vivo: clinical significance of fibronectin and fibronectin receptor expressed in human glioma tissues. Clin. Exp. Metastasis. 16, 729-741 https://doi.org/10.1023/A:1006532812408
  25. Ryu, S., Jimi, S., Eura, Y., Kato, T. and Takebayashi, S. (1999). Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett. 146, 103-109 https://doi.org/10.1016/S0304-3835(99)00259-1
  26. Sato, H., Takino, T. and Miyamori, H. (2005). Roles of membranetype matrix metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci. 96, 212-217 https://doi.org/10.1111/j.1349-7006.2005.00039.x
  27. Seiki, M. (2002). The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr. Opin. Cell Biol. 14, 624-632 https://doi.org/10.1016/S0955-0674(02)00363-0
  28. Song, H., Ki, S. H., Kim, S. G. and Moon, A. (2006). Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 66, 10487-10496 https://doi.org/10.1158/0008-5472.CAN-06-1461
  29. Stanton, H., Gavrilovic, J., Atkinson, S. J., d'Ortho, M. P., Yamada, K. M., Zardi, L. and Murphy, G. (1998). The activation of proMMP-2 (gelatinase A) by HT-1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1-MMP (MMP-14) to a 45 kDa form. J. Cell Science 111, 2789-2798
  30. Stetler-Stevenson, W. G., Aznavoorian, S. and Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Bio. 9, 541-573 https://doi.org/10.1146/annurev.cb.09.110193.002545
  31. Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A. and Goldberg, G. I. (1995). Mechanism of cell surface activation of 72kDa type IV collagenase. J. Biol. Chem. 270, 5331-5338 https://doi.org/10.1074/jbc.270.10.5331
  32. Ura, H., Bonfil, R. D., Reich, R., Reddel, R., Pfeifer, A., Harris, C. C. and Klein-Szanto, A. J. P. (1989). Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogenetransformed human bronchial epithelial cells. Cancer Res. 49, 4615-4621
  33. Wang, Z., Juttermann, R. and Soloway, P. D. (2000). TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411-26415 https://doi.org/10.1074/jbc.M001270200
  34. Watson, D. M., Elton, R. A., Jack, W. J., Dixon, J. M., Chetty, U. and Miller, W. R. (1991). The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res. Treat. 17, 161-169 https://doi.org/10.1007/BF01806365
  35. Yu, A. E., Hewitt, R. E., Kleiner, D. E. and Stetler-Stevenson, W. G. (1996). Molecular regulation of cellular invasion-role of gelatinase A and TIMP-2. Biochem. Cell Biol. 74, 823-831 https://doi.org/10.1139/o96-088

Cited by

  1. DGDA, a local sequence of the kringle 2 domain, is a functional motif of the tissue-type plasminogen activator’s antiangiogenic kringle domain vol.391, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2009.11.025
  2. Urokinase-Type Plasminogen Activator Induces BV-2 Microglial Cell Migration Through Activation of Matrix Metalloproteinase-9 vol.35, pp.7, 2010, https://doi.org/10.1007/s11064-010-0141-3
  3. Cross-regulation between protein L-isoaspartyl O-methyltransferase and ERK in epithelial mesenchymal transition of MDA-MB-231 cells vol.32, pp.9, 2011, https://doi.org/10.1038/aps.2011.94