References
- Akiyama, S. K., Olden, K. and Yamada, K. M. (1995). Fibronectin and integrins in invasion and metastasis. Cancer Metastasis. Rev. 14, 173-189 https://doi.org/10.1007/BF00690290
- Arihiro, K., Inai, K., Kurihara, K., Takeda, S. and Kaneko, M. (1993). Distribution of laminin, type IV collagen and fibronectin in the invasive component of breast carcinoma. Acta. Pathol. Jpn. 43, 758-764 https://doi.org/10.1111/j.1440-1827.1993.tb02563.x
- Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T. and Fa.ssler, R. (2002). Integrins in invasive growth. J. Clin. Invest. 109, 999-1006 https://doi.org/10.1172/JCI15468
- Clair, T., Miller, W. and Cho-Chung, Y. (1987). Prognostic significance of the expression of the ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res. 49, 5290-5293
- Clark, G. J. and Der, C. J. (1995). Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat. 35, 133-144 https://doi.org/10.1007/BF00694753
- Curran, S. and Murray, G. I. (1999). Matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 189, 300-308 https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
-
Danen, E. H. P., Sonneveld, P., Brakebusch, C., Fassler, R. and Sonnenberg, A. (2002). The fibronectin-binding integrins
${\alpha}5$ ${\beta}1$ and${\alpha}v{\beta}3$ differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159, 1071-1086 https://doi.org/10.1083/jcb.200205014 - Das, S., Banerji, A., Frei, E. and Chatterjee, A. (2008). Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibro nectin in serum free medium. Life Sciences 82, 467-476 https://doi.org/10.1016/j.lfs.2007.12.013
- Ding, J., Li, D., Wang, X., Wang, C. and Wu, T. (2008). Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology. 55, 2072-2076
- Enam, S. A., Rosenblum, M. L. and Edvardsen, K. (1998). Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectin-positive mesenchymal cell processes. Neurosurg. 42, 599-608 https://doi.org/10.1097/00006123-199803000-00030
- Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis. Cancer Res. 50, 6130-6138
- Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S. and He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc. Natl. Acad. Sci. USA. 86, 8207-8211 https://doi.org/10.1073/pnas.86.21.8207
- Hernandez-Barrantes, S., Toth, M., Bernardo, M. M., Yurkova, M., Gervasi, D. C., Raz, Y., Sang, Q. A. and Fridman, R. (2000). Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J. Biol. Chem. 275, 12080-12089. https://doi.org/10.1074/jbc.275.16.12080
- Ito, H., Duxbury, M., Benoit, E., Farivar, R. S., Gardner-Thorpe, J., Zinner, M. J., Ashley, S. W. and Whang, E. E. (2004). Fibronectin-induced COX-2 mediates MMP-2 expression and invasiveness of rhabdomyosarcoma. Biochem. Biophys. Res. Commun. 318, 594-600 https://doi.org/10.1016/j.bbrc.2004.04.070
- Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., Aoki, T. and Seiki, M. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J. 20, 4782-4793 https://doi.org/10.1093/emboj/20.17.4782
- Juliano, R. L. (2002). Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42, 283-323 https://doi.org/10.1146/annurev.pharmtox.42.090401.151133
- Kaspar, M., Zardi, U. and Neri, D. (2006). Fibronectin as target for tumor therapy. Int. J. Cancer. 118, 1331-1339 https://doi.org/10.1002/ijc.21677
- Kim, I. Y., Jeong, S. J., Kim, E. S., Kim, S. H. and Moon, A. (2007). Type I collagen-induced pro-MMP-2 activation is differentially regulated by H-Ras and N-Ras in breast epithelial cells. J. Biochen. Mol. Biol. 40, 825-831 https://doi.org/10.5483/BMBRep.2007.40.5.825
- Kim, M. S., Lee, E. J., Choi kim, H. R. and Moon, A. (2003). p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell. Cancer Res. 63, 5454-5461
- Kleiner, D. E. and Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 43, 42-51 https://doi.org/10.1007/s002800051097
- Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, J., Foltz, C. M. and Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67-68 https://doi.org/10.1038/284067a0
- Moon, A., Kim, M. S., Kim, T. G., Kim, S. H., Kim, H. E., Chen, Y. Q. and Choi Kim, H. R. (2000). H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int. J. Cancer 85, 176-181 https://doi.org/10.1002/(SICI)1097-0215(20000115)85:2<176::AID-IJC5>3.0.CO;2-E
- Munshi, H. and Stack, M. S. (2006). Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev. 25, 45-56 https://doi.org/10.1007/s10555-006-7888-7
- Ohnishi, T., Hiraga, S., Izumoto, S., Matsumura, H., Kanemura, Y., Arita, N. and Hayakawa, T. (1998). Role of fibronectinstimulated tumor cell migration in glioma invasion in vivo: clinical significance of fibronectin and fibronectin receptor expressed in human glioma tissues. Clin. Exp. Metastasis. 16, 729-741 https://doi.org/10.1023/A:1006532812408
- Ryu, S., Jimi, S., Eura, Y., Kato, T. and Takebayashi, S. (1999). Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett. 146, 103-109 https://doi.org/10.1016/S0304-3835(99)00259-1
- Sato, H., Takino, T. and Miyamori, H. (2005). Roles of membranetype matrix metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci. 96, 212-217 https://doi.org/10.1111/j.1349-7006.2005.00039.x
- Seiki, M. (2002). The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr. Opin. Cell Biol. 14, 624-632 https://doi.org/10.1016/S0955-0674(02)00363-0
- Song, H., Ki, S. H., Kim, S. G. and Moon, A. (2006). Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 66, 10487-10496 https://doi.org/10.1158/0008-5472.CAN-06-1461
- Stanton, H., Gavrilovic, J., Atkinson, S. J., d'Ortho, M. P., Yamada, K. M., Zardi, L. and Murphy, G. (1998). The activation of proMMP-2 (gelatinase A) by HT-1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1-MMP (MMP-14) to a 45 kDa form. J. Cell Science 111, 2789-2798
- Stetler-Stevenson, W. G., Aznavoorian, S. and Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Bio. 9, 541-573 https://doi.org/10.1146/annurev.cb.09.110193.002545
- Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A. and Goldberg, G. I. (1995). Mechanism of cell surface activation of 72kDa type IV collagenase. J. Biol. Chem. 270, 5331-5338 https://doi.org/10.1074/jbc.270.10.5331
- Ura, H., Bonfil, R. D., Reich, R., Reddel, R., Pfeifer, A., Harris, C. C. and Klein-Szanto, A. J. P. (1989). Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogenetransformed human bronchial epithelial cells. Cancer Res. 49, 4615-4621
- Wang, Z., Juttermann, R. and Soloway, P. D. (2000). TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411-26415 https://doi.org/10.1074/jbc.M001270200
- Watson, D. M., Elton, R. A., Jack, W. J., Dixon, J. M., Chetty, U. and Miller, W. R. (1991). The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res. Treat. 17, 161-169 https://doi.org/10.1007/BF01806365
- Yu, A. E., Hewitt, R. E., Kleiner, D. E. and Stetler-Stevenson, W. G. (1996). Molecular regulation of cellular invasion-role of gelatinase A and TIMP-2. Biochem. Cell Biol. 74, 823-831 https://doi.org/10.1139/o96-088
Cited by
- DGDA, a local sequence of the kringle 2 domain, is a functional motif of the tissue-type plasminogen activator’s antiangiogenic kringle domain vol.391, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2009.11.025
- Urokinase-Type Plasminogen Activator Induces BV-2 Microglial Cell Migration Through Activation of Matrix Metalloproteinase-9 vol.35, pp.7, 2010, https://doi.org/10.1007/s11064-010-0141-3
- Cross-regulation between protein L-isoaspartyl O-methyltransferase and ERK in epithelial mesenchymal transition of MDA-MB-231 cells vol.32, pp.9, 2011, https://doi.org/10.1038/aps.2011.94