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FUZZY TRANSLATIONS AND FUZZY MULTIPLICATIONS
OF BCK/BCI-ALGEBRAS

Kyoung Ja Lee, Young Bae Jun, and Myung Im Doh

Abstract. Fuzzy translations, (normalized, maximal) fuzzy extensions
and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras are
discussed. Relations among fuzzy translations, (normalized, maximal)
fuzzy extensions and fuzzy multiplications are investigated.

1. Introduction

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generaliza-
tion of the concept of set-theoretic difference and propositional calculus. For
the general development of BCK/BCI-algebras, the ideal theory and its fuzzifi-
cation play an important role. Jun (together with Kim, Meng, Song, and Xin)
studied fuzzy trends of several notions in BCK/BCI-algebras (see [2, 3, 4, 6]).
In this paper, we discuss fuzzy translations, (normalized, maximal) fuzzy ex-
tensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras.
We investigate relations among fuzzy translations, (normalized, maximal) fuzzy
extensions and fuzzy multiplications.

2. Preliminaries

A BCK-algebra is an important class of logical algebras introduced by K. Iséki
and was extensively investigated by several researchers.

An algebra (X; ∗, θ) of type (2, 0) is called a BCI-algebra if it satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ),
(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = θ),

(III) (∀x ∈ X) (x ∗ x = θ),
(IV) (∀x, y ∈ X) (x ∗ y = θ, y ∗ x = θ ⇒ x = y).

If a BCI-algebra X satisfies the following identity:
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(V) (∀x ∈ X) (θ ∗ x = θ),
then X is called a BCK-algebra. Any BCK-algebra X satisfies the following
axioms:

(a1) (∀x ∈ X) (x ∗ θ = x),
(a2) (∀x, y, z ∈ X) (x ∗ y = θ ⇒ (x ∗ z) ∗ (y ∗ z) = θ, (z ∗ y) ∗ (z ∗ x) = θ),
(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) (((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = θ).
A subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S

for all x, y ∈ S.
We refer the reader to the books [1] and [5] for further information regarding

BCK/BCI-algebras.
A fuzzy subset µ of a BCK/BCI-algebra X is called a fuzzy subalgebra of X

if it satisfies:
(∀x, y ∈ X)(µ(x ∗ y) ≥ min{µ(x), µ(y)}).

3. Fuzzy translations and fuzzy multiplications of
fuzzy subalgebras

In what follows let X = (X, ∗, θ) denote a BCK/BCI-algebra, and for any
fuzzy set µ of X, we denote > := 1 − sup{µ(x) | x ∈ X} unless otherwise
specified.

Definition 3.1. Let µ be a fuzzy subset of X and let α ∈ [0,>]. A mapping
µT

α : X → [0, 1] is called a fuzzy α-translation of µ if it satisfies:

(∀x ∈ X)(µT
α(x) = µ(x) + α).

Theorem 3.2. Let µ be a fuzzy subalgebra of X and α ∈ [0,>]. Then the fuzzy
α-translation µT

α of µ is a fuzzy subalgebra of X.

Proof. Let x, y ∈ X. Then

µT
α(x ∗ y) = µ(x ∗ y) + α ≥ min{µ(x), µ(y)}+ α

= min{µ(x) + α, µ(y) + α} = min{µT
α(x), µT

α(y)}.
Hence µT

α is a fuzzy subalgebra of X. ¤

Theorem 3.3. Let µ be a fuzzy subset of X such that the fuzzy α-translation
µT

α of µ is a fuzzy subalgebra of X for some α ∈ [0,>]. Then µ is a fuzzy
subalgebra of X.

Proof. Assume that µT
α is a fuzzy subalgebra of X for some α ∈ [0,>]. Let

x, y ∈ X, we have

µ(x ∗ y) + α = µT
α(x ∗ y) ≥ min{µT

α(x), µT
α(y)}

= min{µ(x) + α, µ(y) + α} = min{µ(x), µ(y)}+ α

which implies that µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ X. Hence µ is a
fuzzy subalgebra of X. ¤
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Definition 3.4. Let µ1 and µ2 be fuzzy subsets of X. If µ1(x) ≤ µ2(x) for all
x ∈ X, then we say that µ2 is a fuzzy extension of µ1.

Definition 3.5. Let µ1 and µ2 be fuzzy subsets of X. Then µ2 is called a fuzzy
S-extension of µ1 if the following assertions are valid:

(i) µ2 is a fuzzy extension of µ1.
(ii) If µ1 is a fuzzy subalgebra of X, then µ2 is a fuzzy subalgebra of X.

By means of the definition of fuzzy α-translation, we know that µT
α(x) ≥ µ(x)

for all x ∈ X. Hence we have the following theorem.

Theorem 3.6. Let µ be a fuzzy subalgebra of X and α ∈ [0,>]. Then the fuzzy
α-translation µT

α of µ is a fuzzy S-extension of µ.

The converse of Theorem 3.6 is not true in general as seen in the following
example.

Example 3.7. Consider a BCK-algebra X = {θ, a, b, c, d} with the following
Cayley table:

∗ θ a b c d
θ θ θ θ θ θ
a a θ a θ θ
b b b θ b θ
c c a c θ a
d d d d d θ

Define a fuzzy subset µ of X by

X θ a b c d

µ 0.8 0.5 0.3 0.6 0.2

Then µ is a fuzzy subalgebra of X. Let ν be a fuzzy subset of X given by

X θ a b c d

ν 0.84 0.56 0.38 0.67 0.21

Then ν is a fuzzy S-extension of µ. But it is not the fuzzy α-translation µT
α of

µ for all α ∈ [0,>].

Clearly, the intersection of fuzzy S-extensions of a fuzzy subalgebra µ is a
fuzzy S-extension of µ. But the union of fuzzy S-extensions of a fuzzy subal-
gebra µ is not a fuzzy S-extension of µ as seen in the following example.
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Example 3.8. Consider a BCK-algebra X = {θ, a, b, c, d} with the following
Cayley table:

∗ θ a b c d
θ θ θ θ θ θ
a a θ θ θ θ
b b a θ θ θ
c c a a θ θ
d d c c a θ

Define a fuzzy subset µ of X by

X θ a b c d

µ 0.7 0.4 0.6 0.3 0.3

Then µ is a fuzzy subalgebra of X. Let ν and δ be fuzzy subsets of X given by

X θ a b c d

ν 0.8 0.6 0.8 0.4 0.4

δ 0.9 0.6 0.6 0.6 0.7

Then ν and δ are fuzzy S-extensions of µ. But the union ν ∪ δ is not a fuzzy
S-extension of µ since (ν ∪ δ)(d ∗ b) = 0.6 � 0.7 = min{(ν ∪ δ)(d), (ν ∪ δ)(b)}.

For a fuzzy subset µ of X, α ∈ [0,>] and t ∈ [0, 1] with t ≥ α, let

Uα(µ; t) := {x ∈ X | µ(x) ≥ t− α}.
If µ is a fuzzy subalgebra of X, then it is clear that Uα(µ; t) is a subalgebra of
X for all t ∈ Im(µ) with t ≥ α. But, if we do not give a condition that µ is a
fuzzy subalgebra of X, then Uα(µ; t) is not a subalgebra of X as seen in the
following example.

Example 3.9. Let X = {θ, a, b, c, d} be a BCK-algebra which is given in
Example 3.8. Define a fuzzy subset µ of X by

X θ a b c d

µ 0.7 0.4 0.6 0.3 0.5

Then µ is not a fuzzy subalgebra of X since µ(d∗b)=0.3 �0.5=min{µ(d), µ(b)}.
For α = 0.1 and t = 0.5, we obtain Uα(µ; t) = {θ, a, b, d} which is not a subal-
gebra of X since d ∗ b = c /∈ Uα(µ; t).

Theorem 3.10. Let µ be a fuzzy subset of X and α ∈ [0,>]. Then the fuzzy
α-translation µT

α of µ is a fuzzy subalgebra of X if and only if Uα(µ; t) is a
subalgebra of X for all t ∈ Im(µ) with t ≥ α.
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Proof. Necessity is clear. To prove the sufficiency, assume that there exist
a, b ∈ X such that µT

α(a ∗ b) < β ≤ min{µT
α(a), µT

α(b)}. Then µ(a) ≥ β − α
and µ(b) ≥ β − α, but µ(a ∗ b) < β − α. This shows that a, b ∈ Uα(µ; β) and
a∗ b /∈ Uα(µ;β). This is a contradiction, and so µT

α(x∗y) ≥ min{µT
α(x), µT

α(y)}
for all x, y ∈ X. Hence µT

α is a fuzzy subalgebra of X. ¤
Theorem 3.11. Let µ be a fuzzy subalgebra of X and let α, β ∈ [0,>]. If
α ≥ β, then the fuzzy α-translation µT

α of µ is a fuzzy S-extension of the fuzzy
β-translation µT

β of µ.

Proof. Straightforward. ¤
For every fuzzy subalgebra µ of X and β ∈ [0,>], the fuzzy β-translation

µT
β of µ is a fuzzy subalgebra of X. If ν is a fuzzy S-extension of µT

β , then there
exists α ∈ [0,>] such that α ≥ β and ν(x) ≥ µT

α(x) for all x ∈ X. Thus we
have the following theorem.

Theorem 3.12. Let µ be a fuzzy subalgebra of X and β ∈ [0,>]. For every
fuzzy S-extension ν of the fuzzy β-translation µT

β of µ, there exists α ∈ [0,>]
such that α ≥ β and ν is a fuzzy S-extension of the fuzzy α-translation µT

α of
µ.

The following example illustrates Theorem 3.12.

Example 3.13. Consider a BCK-algebra X = {θ, a, b, c, d} with the following
Cayley table:

∗ θ a b c d
θ θ θ θ θ θ
a a θ θ a a
b b b θ b b
c c c c θ c
d d d d d θ

Define a fuzzy subset µ of X by

X θ a b c d

µ 0.7 0.4 0.2 0.5 0.1

Then µ is a fuzzy subalgebra of X, and > = 0.3. If we take β = 0.2, then the
fuzzy β-translation µT

β of µ is given by

X θ a b c d

µT
β 0.9 0.6 0.4 0.7 0.3

Let ν be a fuzzy subset of X defined by

X θ a b c d

ν 0.94 0.63 0.55 0.88 0.37
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Then ν is clearly a fuzzy subalgebra of X which is fuzzy extension of µT
β ,

and hence ν is a fuzzy S-extension of the fuzzy β-translation µT
β of µ. But ν

is a not a fuzzy α-translation of µ for all α ∈ [0,>]. Take α = 0.23. Then
α = 0.23 > 0.2 = β, and the fuzzy α-translation µT

α of µ is given as follows:

X θ a b c d

µT
α 0.93 0.63 0.43 0.73 0.33

Note that ν(x) ≥ µT
α(x) for all x ∈ X, and hence ν is a fuzzy S-extension of

the fuzzy α-translation µT
α of µ.

A fuzzy S-extension ν of a fuzzy subalgebra µ of X is said to be normalized
if there exists x0 ∈ X such that ν(x0) = 1. Let µ be a fuzzy subalgebra of X.
A fuzzy subset ν of X is called a maximal fuzzy S-extension of µ if it satisfies:

(i) ν is a fuzzy S-extension of µ,
(ii) there does not exist another fuzzy subalgebra of X which is a fuzzy

extension of ν.

Example 3.14. Let N be the set of all natural numbers and let ∗ be a binary
operation on N defined by

(∀a, b ∈ N)
(
a ∗ b = a

(a,b)

)
,

where (a, b) is the greatest common divisor of a and b. Then (N; ∗, 1) is a BCK-
algebra. Let µ and ν be fuzzy subsets of N which are defined by µ(x) = 1

3 and
ν(x) = 1 for all x ∈ N. Clearly µ and ν are fuzzy subalgebras of N. It is easy
to verify that ν is a maximal fuzzy S-extension of µ.

Proposition 3.15. If a fuzzy subset ν of X is a normalized fuzzy S-extension
of a fuzzy subalgebra µ of X, then ν(θ) = 1.

Proof. It is clear because ν(θ) ≥ ν(x) for all x ∈ X. ¤
Theorem 3.16. Let µ be a fuzzy subalgebra of X. Then every maximal fuzzy
S-extension of µ is normalized.

Proof. This follows from the definitions of the maximal and normalized fuzzy
S-extensions. ¤
Definition 3.17. Let µ be a fuzzy subset of X and γ ∈ [0, 1]. A fuzzy γ-
multiplication of µ, denoted by µm

γ , is defined to be a mapping

µm
γ : X → [0, 1], x 7→ µ(x) · γ.

For any fuzzy subset µ of X, a fuzzy 0-multiplication µm
0 of µ is clearly a

fuzzy subalgebra of X.

Theorem 3.18. If µ is a fuzzy subalgebra of X, then the fuzzy γ-multiplication
of µ is a fuzzy subalgebra of X for all γ ∈ [0, 1].

Proof. Straightforward. ¤
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Theorem 3.19. For any fuzzy subset µ of X, the following are equivalent:

(i) µ is a fuzzy subalgebra of X.
(ii) (∀γ ∈ (0, 1]) (µm

γ is a fuzzy subalgebra of X).

Proof. Necessity follows from Theorem 3.18. Let γ ∈ (0, 1] be such that µm
γ is

a fuzzy subalgebra of X. Then

µ(x ∗ y) · γ = µm
γ (x ∗ y) ≥ min{µm

γ (x), µm
γ (y)}

= min{µ(x) · γ, µ(y) · γ} = min{µ(x), µ(y)} · γ
for all x, y ∈ X, and so µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ X since γ 6= 0.
Hence µ is a fuzzy subalgebra of X. ¤

Theorem 3.20. Let µ be a fuzzy subset of X, α ∈ [0,>] and γ ∈ (0, 1].
Then every fuzzy α-translation µT

α of µ is a fuzzy S-extension of the fuzzy
γ-multiplication µm

γ of µ.

Proof. For every x ∈ X, we have µT
α(x) = µ(x)+α ≥ µ(x) ≥ µ(x) · γ = µm

γ (x),
and so µT

α is a fuzzy extension of µm
γ . Assume that µm

γ is a fuzzy subalgebra
of X. Then µ is a fuzzy subalgebra of X by Theorem 3.19. It follows from
Theorem 3.2 that µT

α is a fuzzy subalgebra of X for all α ∈ [0,>]. Hence every
fuzzy α-translation µT

α is a fuzzy S-extension of the fuzzy γ-multiplication
µm

γ . ¤

The following example shows that Theorem 3.20 is not valid for γ = 0.

Example 3.21. Consider a BCI-algebra (Z, ∗, 0) where Z is the set of all
integers and ∗ is the minus operation. Define a fuzzy set µ : Z→ [0, 1] by

µ(x) :=
{

0 if x > 0,
1
2 if x ≤ 0.

Taking γ = 0, we see that µm
0 (x ∗ y) = 0 = min{µm

0 (x), µm
0 (y)} for all x, y ∈ Z,

that is, µm
0 is a fuzzy subalgebra of Z. But if we take x = −3 and y = −5,

then µT
α(x ∗ y) = µT

α(2) = µ(2) + α = α < 1
2 + α = min{µT

α(x), µT
α(y)} for all

α ∈ [0, 1
2 ]. Hence µT

α is not a fuzzy S-extension of µm
0 for all α ∈ [0, 1

2 ].

The following example illustrates Theorem 3.20.

Example 3.22. Let X = {θ, a, b, c, d} be a BCK-algebra which is given in Ex-
ample 3.13, and consider a fuzzy subalgebra µ of X that is defined in Example
3.13. If we take γ = 0.1, then the fuzzy γ-multiplication µm

0.1 of µ is given by

X θ a b c d

µm
0.1 0.07 0.04 0.02 0.05 0.01
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Clearly µm
0.1 is a fuzzy subalgebra of X. Also, for any α ∈ [0, 0.3], the fuzzy

α-translation µT
α of µ is given by

X θ a b c d

µT
α 0.7 + α 0.4 + α 0.2 + α 0.5 + α 0.1 + α

Then µT
α is a fuzzy extension of µm

0.1 and µT
α is always a fuzzy subalgebra of X

for all α ∈ [0, 0.3]. Hence µT
α is a fuzzy S-extension of µm

0.1 for all α ∈ [0, 0.3].

References

[1] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[2] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Commun. Korean

Math. Soc. 9 (1994), no. 1, 19–25.
[3] Y. B. Jun and S. Z. Song, Fuzzy set theort applied to implicative ideals in BCK-algebras,

Bull. Korean Math. Soc. 43 (2006), no. 3, 461–470.
[4] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and

Systems 117 (2004), 463–469.
[5] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul, 1994.
[6] J. Meng, Y. B. Jun, and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy

Sets and Systems 89 (1997), 243–248.

Kyoung Ja Lee
Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea
E-mail address: kjlee@hnu.kr

Young Bae Jun
Department of Mathematics Education (and RINS)
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: skywine@gmail.com, ybjun@gnu.kr

Myung Im Doh
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: sansudo6@hanmail.net


