FUZZY TRANSLATIONS AND FUZZY MULTIPLICATIONS OF BCK/BCI-ALGEBRAS

KYOUNG JA LEE, YOUNG BAE JUN, AND MYUNG IM DOH

ABSTRACT. Fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras are discussed. Relations among fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications are investigated.

1. Introduction

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. For the general development of BCK/BCI-algebras, the ideal theory and its fuzzification play an important role. Jun (together with Kim, Meng, Song, and Xin) studied fuzzy trends of several notions in BCK/BCI-algebras (see [2, 3, 4, 6]). In this paper, we discuss fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras. We investigate relations among fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications.

2. Preliminaries

A BCK-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra $(X; *, \theta)$ of type (2,0) is called a BCI-algebra if it satisfies the following conditions:

- $({\rm I}) \ \, (\forall x,y,z \in X) \, \left(((x*y)*(x*z))*(z*y) = \theta \right),$
- (II) $(\forall x, y \in X) ((x * (x * y)) * y = \theta),$
- (III) $(\forall x \in X) (x * x = \theta),$
- (IV) $(\forall x, y \in X)$ $(x * y = \theta, y * x = \theta \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity:

Received November 21, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 06F35, 08A72.

 $Key\ words\ and\ phrases.$ fuzzy translation, (normalized, maximal) fuzzy extension, fuzzy multiplication.

This paper has been supported by the 2009 Hannam University Fund.

(V)
$$(\forall x \in X) (\theta * x = \theta),$$

then X is called a BCK-algebra. Any BCK-algebra X satisfies the following axioms:

- (a1) $(\forall x \in X) (x * \theta = x),$
- (a2) $(\forall x, y, z \in X)$ $(x * y = \theta \Rightarrow (x * z) * (y * z) = \theta, (z * y) * (z * x) = \theta),$
- (a3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$
- (a4) $(\forall x, y, z \in X)$ $(((x*z)*(y*z))*(x*y) = \theta).$

A subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x*y \in S$ for all $x,y \in S$.

We refer the reader to the books [1] and [5] for further information regarding BCK/BCI-algebras.

A fuzzy subset μ of a BCK/BCI-algebra X is called a fuzzy subalgebra of X if it satisfies:

$$(\forall x, y \in X)(\mu(x * y) \ge \min\{\mu(x), \mu(y)\}).$$

3. Fuzzy translations and fuzzy multiplications of fuzzy subalgebras

In what follows let $X = (X, *, \theta)$ denote a BCK/BCI-algebra, and for any fuzzy set μ of X, we denote $\top := 1 - \sup\{\mu(x) \mid x \in X\}$ unless otherwise specified.

Definition 3.1. Let μ be a fuzzy subset of X and let $\alpha \in [0, \top]$. A mapping $\mu_{\alpha}^T : X \to [0, 1]$ is called a fuzzy α -translation of μ if it satisfies:

$$(\forall x \in X)(\mu_{\alpha}^{T}(x) = \mu(x) + \alpha).$$

Theorem 3.2. Let μ be a fuzzy subalgebra of X and $\alpha \in [0, \top]$. Then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy subalgebra of X.

Proof. Let $x, y \in X$. Then

$$\mu_{\alpha}^{T}(x * y) = \mu(x * y) + \alpha \ge \min\{\mu(x), \mu(y)\} + \alpha$$
$$= \min\{\mu(x) + \alpha, \mu(y) + \alpha\} = \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}.$$

Hence μ_{α}^{T} is a fuzzy subalgebra of X.

Theorem 3.3. Let μ be a fuzzy subset of X such that the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy subalgebra of X for some $\alpha \in [0, \top]$. Then μ is a fuzzy subalgebra of X.

Proof. Assume that μ_{α}^{T} is a fuzzy subalgebra of X for some $\alpha \in [0, T]$. Let $x, y \in X$, we have

$$\begin{array}{lcl} \mu(x*y) + \alpha & = & \mu_{\alpha}^T(x*y) \, \geq \, \min\{\mu_{\alpha}^T(x), \mu_{\alpha}^T(y)\} \\ & = & \min\{\mu(x) + \alpha, \mu(y) + \alpha\} \, = \, \min\{\mu(x), \mu(y)\} + \alpha \end{array}$$

which implies that $\mu(x*y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Hence μ is a fuzzy subalgebra of X.

Definition 3.4. Let μ_1 and μ_2 be fuzzy subsets of X. If $\mu_1(x) \leq \mu_2(x)$ for all $x \in X$, then we say that μ_2 is a fuzzy extension of μ_1 .

Definition 3.5. Let μ_1 and μ_2 be fuzzy subsets of X. Then μ_2 is called a *fuzzy* S-extension of μ_1 if the following assertions are valid:

- (i) μ_2 is a fuzzy extension of μ_1 .
- (ii) If μ_1 is a fuzzy subalgebra of X, then μ_2 is a fuzzy subalgebra of X.

By means of the definition of fuzzy α -translation, we know that $\mu_{\alpha}^{T}(x) \geq \mu(x)$ for all $x \in X$. Hence we have the following theorem.

Theorem 3.6. Let μ be a fuzzy subalgebra of X and $\alpha \in [0, \top]$. Then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy S-extension of μ .

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ with the following Cayley table:

*	θ	a	b	c	d
θ	θ	θ	θ	θ	θ
a	a	θ	a	θ	θ
b	b	b	θ	b	θ
c	c	a	c	θ	a
d	d	d	d	d	θ

Define a fuzzy subset μ of X by

X	θ	a	b	c	d
μ	0.8	0.5	0.3	0.6	0.2

Then μ is a fuzzy subalgebra of X. Let ν be a fuzzy subset of X given by

X	θ	a	b	c	d
ν	0.84	0.56	0.38	0.67	0.21

Then ν is a fuzzy S-extension of μ . But it is not the fuzzy α -translation μ_{α}^{T} of μ for all $\alpha \in [0, \top]$.

Clearly, the intersection of fuzzy S-extensions of a fuzzy subalgebra μ is a fuzzy S-extension of μ . But the union of fuzzy S-extensions of a fuzzy subalgebra μ is not a fuzzy S-extension of μ as seen in the following example.

Example 3.8. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ with the following Cayley table:

*	θ	a	b	c	d
θ	θ	θ	θ	θ	θ
a	a	θ	θ	θ	θ
b	b	a	θ	θ	θ
c	c	a	a	θ	θ
d	d	c	c	a	θ

Define a fuzzy subset μ of X by

X	θ	a	b	c	d
μ	0.7	0.4	0.6	0.3	0.3

Then μ is a fuzzy subalgebra of X. Let ν and δ be fuzzy subsets of X given by

X	θ	a	b	c	d
ν	0.8	0.6	0.8	0.4	0.4
δ	0.9	0.6	0.6	0.6	0.7

Then ν and δ are fuzzy S-extensions of μ . But the union $\nu \cup \delta$ is not a fuzzy S-extension of μ since $(\nu \cup \delta)(d * b) = 0.6 \ngeq 0.7 = \min\{(\nu \cup \delta)(d), (\nu \cup \delta)(b)\}.$

For a fuzzy subset μ of X, $\alpha \in [0, T]$ and $t \in [0, 1]$ with $t \geq \alpha$, let

$$U_{\alpha}(\mu; t) := \{ x \in X \mid \mu(x) \ge t - \alpha \}.$$

If μ is a fuzzy subalgebra of X, then it is clear that $U_{\alpha}(\mu;t)$ is a subalgebra of X for all $t \in \text{Im}(\mu)$ with $t \geq \alpha$. But, if we do not give a condition that μ is a fuzzy subalgebra of X, then $U_{\alpha}(\mu;t)$ is not a subalgebra of X as seen in the following example.

Example 3.9. Let $X = \{\theta, a, b, c, d\}$ be a BCK-algebra which is given in Example 3.8. Define a fuzzy subset μ of X by

X	θ	a	b	c	d
μ	0.7	0.4	0.6	0.3	0.5

Then μ is not a fuzzy subalgebra of X since $\mu(d*b)=0.3 \not\geq 0.5 = \min\{\mu(d), \mu(b)\}$. For $\alpha=0.1$ and t=0.5, we obtain $U_{\alpha}(\mu;t)=\{\theta,a,b,d\}$ which is not a subalgebra of X since $d*b=c \notin U_{\alpha}(\mu;t)$.

Theorem 3.10. Let μ be a fuzzy subset of X and $\alpha \in [0, \top]$. Then the fuzzy α -translation μ_{α}^T of μ is a fuzzy subalgebra of X if and only if $U_{\alpha}(\mu;t)$ is a subalgebra of X for all $t \in \text{Im}(\mu)$ with $t \geq \alpha$.

Proof. Necessity is clear. To prove the sufficiency, assume that there exist $a,b \in X$ such that $\mu_{\alpha}^{T}(a*b) < \beta \leq \min\{\mu_{\alpha}^{T}(a),\mu_{\alpha}^{T}(b)\}$. Then $\mu(a) \geq \beta - \alpha$ and $\mu(b) \geq \beta - \alpha$, but $\mu(a*b) < \beta - \alpha$. This shows that $a,b \in U_{\alpha}(\mu;\beta)$ and $a*b \notin U_{\alpha}(\mu;\beta)$. This is a contradiction, and so $\mu_{\alpha}^{T}(x*y) \geq \min\{\mu_{\alpha}^{T}(x),\mu_{\alpha}^{T}(y)\}$ for all $x,y \in X$. Hence μ_{α}^{T} is a fuzzy subalgebra of X.

Theorem 3.11. Let μ be a fuzzy subalgebra of X and let $\alpha, \beta \in [0, \top]$. If $\alpha \geq \beta$, then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy β -translation μ_{β}^{T} of μ .

For every fuzzy subalgebra μ of X and $\beta \in [0, \top]$, the fuzzy β -translation μ_{β}^{T} of μ is a fuzzy subalgebra of X. If ν is a fuzzy S-extension of μ_{β}^{T} , then there exists $\alpha \in [0, \top]$ such that $\alpha \geq \beta$ and $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$. Thus we have the following theorem.

Theorem 3.12. Let μ be a fuzzy subalgebra of X and $\beta \in [0, \top]$. For every fuzzy S-extension ν of the fuzzy β -translation μ_{β}^T of μ , there exists $\alpha \in [0, \top]$ such that $\alpha \geq \beta$ and ν is a fuzzy S-extension of the fuzzy α -translation μ_{α}^T of μ .

The following example illustrates Theorem 3.12.

Example 3.13. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ with the following Cayley table:

*	θ	a	b	c	d
θ	θ	θ	θ	θ	θ
a	a	θ	θ	a	a
b	b	b	θ	b	b
c	c	c	c	θ	c
d	d	d	d	d	θ

Define a fuzzy subset μ of X by

X	θ	a	b	c	d
μ	0.7	0.4	0.2	0.5	0.1

Then μ is a fuzzy subalgebra of X, and $\top = 0.3$. If we take $\beta = 0.2$, then the fuzzy β -translation μ_{β}^T of μ is given by

X	θ	a	b	c	d
μ_{β}^{T}	0.9	0.6	0.4	0.7	0.3

Let ν be a fuzzy subset of X defined by

X	θ	a	b	c	d
ν	0.94	0.63	0.55	0.88	0.37

Then ν is clearly a fuzzy subalgebra of X which is fuzzy extension of μ_{β}^{T} , and hence ν is a fuzzy S-extension of the fuzzy β -translation μ_{β}^{T} of μ . But ν is a not a fuzzy α -translation of μ for all $\alpha \in [0, \top]$. Take $\alpha = 0.23$. Then $\alpha = 0.23 > 0.2 = \beta$, and the fuzzy α -translation μ_{α}^{T} of μ is given as follows:

Note that $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$, and hence ν is a fuzzy S-extension of the fuzzy α -translation μ_{α}^{T} of μ .

A fuzzy S-extension ν of a fuzzy subalgebra μ of X is said to be normalized if there exists $x_0 \in X$ such that $\nu(x_0) = 1$. Let μ be a fuzzy subalgebra of X. A fuzzy subset ν of X is called a maximal fuzzy S-extension of μ if it satisfies:

- (i) ν is a fuzzy S-extension of μ ,
- (ii) there does not exist another fuzzy subalgebra of X which is a fuzzy extension of ν .

Example 3.14. Let \mathbb{N} be the set of all natural numbers and let * be a binary operation on \mathbb{N} defined by

$$(\forall a, b \in \mathbb{N}) \left(a * b = \frac{a}{(a,b)} \right),$$

where (a,b) is the greatest common divisor of a and b. Then $(\mathbb{N};*,1)$ is a BCK-algebra. Let μ and ν be fuzzy subsets of \mathbb{N} which are defined by $\mu(x) = \frac{1}{3}$ and $\nu(x) = 1$ for all $x \in \mathbb{N}$. Clearly μ and ν are fuzzy subalgebras of \mathbb{N} . It is easy to verify that ν is a maximal fuzzy S-extension of μ .

Proposition 3.15. If a fuzzy subset ν of X is a normalized fuzzy S-extension of a fuzzy subalgebra μ of X, then $\nu(\theta) = 1$.

Proof. It is clear because $\nu(\theta) \geq \nu(x)$ for all $x \in X$.

Theorem 3.16. Let μ be a fuzzy subalgebra of X. Then every maximal fuzzy S-extension of μ is normalized.

Proof. This follows from the definitions of the maximal and normalized fuzzy S-extensions.

Definition 3.17. Let μ be a fuzzy subset of X and $\gamma \in [0,1]$. A fuzzy γ -multiplication of μ , denoted by μ_{γ}^{m} , is defined to be a mapping

$$\mu_{\gamma}^m: X \to [0,1], \ x \mapsto \mu(x) \cdot \gamma.$$

For any fuzzy subset μ of X, a fuzzy 0-multiplication μ_0^m of μ is clearly a fuzzy subalgebra of X.

Theorem 3.18. If μ is a fuzzy subalgebra of X, then the fuzzy γ -multiplication of μ is a fuzzy subalgebra of X for all $\gamma \in [0,1]$.

Proof. Straightforward.

Theorem 3.19. For any fuzzy subset μ of X, the following are equivalent:

- (i) μ is a fuzzy subalgebra of X.
- (ii) $(\forall \gamma \in (0,1])$ $(\mu_{\gamma}^m \text{ is a fuzzy subalgebra of } X).$

Proof. Necessity follows from Theorem 3.18. Let $\gamma \in (0,1]$ be such that μ_{γ}^{m} is a fuzzy subalgebra of X. Then

$$\begin{array}{lcl} \mu(x*y) \cdot \gamma & = & \mu_{\gamma}^m(x*y) \geq \min\{\mu_{\gamma}^m(x), \mu_{\gamma}^m(y)\} \\ & = & \min\{\mu(x) \cdot \gamma, \; \mu(y) \cdot \gamma\} = \; \min\{\mu(x), \mu(y)\} \cdot \gamma \end{array}$$

for all $x, y \in X$, and so $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$ since $\gamma \ne 0$. Hence μ is a fuzzy subalgebra of X.

Theorem 3.20. Let μ be a fuzzy subset of X, $\alpha \in [0, \top]$ and $\gamma \in (0, 1]$. Then every fuzzy α -translation μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy γ -multiplication μ_{γ}^{m} of μ .

Proof. For every $x \in X$, we have $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \geq \mu(x) \geq \mu(x) \cdot \gamma = \mu_{\gamma}^{m}(x)$, and so μ_{α}^{T} is a fuzzy extension of μ_{γ}^{m} . Assume that μ_{γ}^{m} is a fuzzy subalgebra of X. Then μ is a fuzzy subalgebra of X by Theorem 3.19. It follows from Theorem 3.2 that μ_{α}^{T} is a fuzzy subalgebra of X for all $\alpha \in [0, T]$. Hence every fuzzy α -translation μ_{α}^{T} is a fuzzy S-extension of the fuzzy γ -multiplication μ_{γ}^{m} .

The following example shows that Theorem 3.20 is not valid for $\gamma = 0$.

Example 3.21. Consider a BCI-algebra $(\mathbb{Z}, *, 0)$ where \mathbb{Z} is the set of all integers and * is the minus operation. Define a fuzzy set $\mu : \mathbb{Z} \to [0, 1]$ by

$$\mu(x) := \begin{cases} 0 & \text{if } x > 0, \\ \frac{1}{2} & \text{if } x \le 0. \end{cases}$$

Taking $\gamma=0$, we see that $\mu_0^m(x*y)=0=\min\{\mu_0^m(x),\mu_0^m(y)\}$ for all $x,y\in\mathbb{Z}$, that is, μ_0^m is a fuzzy subalgebra of \mathbb{Z} . But if we take x=-3 and y=-5, then $\mu_\alpha^T(x*y)=\mu_\alpha^T(2)=\mu(2)+\alpha=\alpha<\frac{1}{2}+\alpha=\min\{\mu_\alpha^T(x),\mu_\alpha^T(y)\}$ for all $\alpha\in[0,\frac{1}{2}]$. Hence μ_α^T is not a fuzzy S-extension of μ_0^m for all $\alpha\in[0,\frac{1}{2}]$.

The following example illustrates Theorem 3.20.

Example 3.22. Let $X = \{\theta, a, b, c, d\}$ be a BCK-algebra which is given in Example 3.13, and consider a fuzzy subalgebra μ of X that is defined in Example 3.13. If we take $\gamma = 0.1$, then the fuzzy γ -multiplication $\mu_{0.1}^m$ of μ is given by

X	θ	a	b	c	d
$\mu_{0.1}^{m}$	0.07	0.04	0.02	0.05	0.01

Clearly $\mu_{0.1}^m$ is a fuzzy subalgebra of X. Also, for any $\alpha \in [0, 0.3]$, the fuzzy α -translation μ_{α}^T of μ is given by

X	θ	a	b	c	d
μ_{α}^{T}	$0.7 + \alpha$	$0.4 + \alpha$	$0.2 + \alpha$	$0.5 + \alpha$	$0.1 + \alpha$

Then μ_{α}^T is a fuzzy extension of $\mu_{0.1}^m$ and μ_{α}^T is always a fuzzy subalgebra of X for all $\alpha \in [0, 0.3]$. Hence μ_{α}^T is a fuzzy S-extension of $\mu_{0.1}^m$ for all $\alpha \in [0, 0.3]$.

References

- [1] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Commun. Korean Math. Soc. 9 (1994), no. 1, 19–25.
- [3] Y. B. Jun and S. Z. Song, Fuzzy set theort applied to implicative ideals in BCK-algebras, Bull. Korean Math. Soc. 43 (2006), no. 3, 461–470.
- [4] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems 117 (2004), 463–469.
- [5] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul, 1994.
- [6] J. Meng, Y. B. Jun, and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89 (1997), 243–248.

Kyoung Ja Lee

DEPARTMENT OF MATHEMATICS EDUCATION

HANNAM UNIVERSITY

Daejeon 306-791, Korea

 $E ext{-}mail\ address:$ kjlee@hnu.kr

Young Bae Jun

DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS)

Gyeongsang National University

Chinju 660-701, Korea

E-mail address: skywine@gmail.com, ybjun@gnu.kr

Myung Im Doh

DEPARTMENT OF MATHEMATICS

Gyeongsang National University

Chinju 660-701, Korea

E-mail address: sansudo6@hanmail.net