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A NOTE ON f-DERIVATIONS OF BCI-ALGEBRAS

Malik Anjum Javed and Muhammad Aslam

Abstract. In this paper, we investigate some fundamental properties
and establish some results of f -derivations of BCI-algebras. Also, we
prove Der(X), the collection of all f -derivations, form a semigroup under
certain binary operation.

1. Introduction and preliminaries

BCI-algebra has been developed from BCI-logic on the similar way as Bool-
ean algebra was developed from Boolean logic which have a lot of application
in computer sciences ([14]). Recently greater interest has been developed in the
derivation of BCI-algebras, introduced by Y. B. Jun and X. L. Xin [8], which
was motivated from a lot of work done on derivations of rings and Near rings
(see [9, 11]). The notion was further explored in the form of f -derivations of
BCI-algebras by J. M. Zhan and Y. L. Liu [15]. In this paper, we prove some
results on f -derivations of BCI-algebras. First, we show that an f -derivation
of BCK-algebra is regular. However, we are able to show that under certain
conditions namely, for a ∈ X, f(a)∗df (x) = 0 or df (x)∗f(a) = 0, for all x ∈ X
the f -derivation, df , of a BCI-algebra X is regular and X is a BCK-algebra.
Also, we study derivations in a p-semisimple BCI-algebra and show that if
df , d

′
f are f -derivations in X, then df ◦ d

′
f is also a f -derivation and df ◦ d

′
f =

d
′
f ◦ df . Consequently it is shown that (f ◦ d

′
f ) • (df ◦ f) = (df ◦ f) • (f ◦ d

′
f ).

Now, we include necessary preliminaries required for the sequel. (X, ∗, 0) with
a binary operation ∗ and distinguished element 0 is called a BCI-algebra, if it
satisfies the following axioms for all x, y, z ∈ X.

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ≤ (z ∗ y).
(BCI-2) (x ∗ (x ∗ y)) ≤ y.
(BCI-3) x ≤ x.
(BCI-4) x ≤ y and y ≤ x imply x = y,

where ≤ is defined as x ≤ y if and only if x ∗ y = 0.
Also, (X,≤) is a partially ordered set. A BCI-algebra X satisfying 0 ≤ x,

for all x ∈ X, is called a BCK-algebra. If A is a branch of X, then X is said to
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be commutative on A if x∧ y = y ∧ x for all x, y ∈ A, where x∧ y = y ∗ (y ∗ x).
In any BCI-algebra X, the following properties are valid (see [1, 7]) for all
x, y, z ∈ X:

(1) x ∗ 0 = x.
(2) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(3) x ≤ y implies that x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x.
(4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
(5) x ∗ (x ∗ (x ∗ y)) = x ∗ y.
(6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).
(7) x ∗ 0 = 0 implies x = 0.
For a BCI-algebra X, we define X+ = {x ∈ X : 0 ≤ X}, the BCK-part of

X, G(X) = {x ∈ X : 0 ∗ x = x} , the BCI-G part of X. If X+ = {0} , then X
is called a p-semisimple BCI-algebra. If X is a p-semisimple BCI-algebra, then
the following properties are valid for all x, y, z ∈ X [3, 4, 5, 11].

(8) (x ∗ z) ∗ (y ∗ z) = x ∗ y.
(9) (0 ∗ (0 ∗ x)) = x for all x ∈ X.
(10) (x ∗ (0 ∗ y)) = y ∗ (0 ∗ x).
(11) x ∗ y = 0 implies x = y.
(12) x ∗ a = x ∗ b implies a = b.
(13) a ∗ x = b ∗ x implies a = b.
(14) a ∗ (a ∗ x) = x.

Theorem 1.1 ([8, Theorem 3.4]). Let X be a BCI-algebra. X is commutative
if and only if it is branch wise commutative.

On commutative BCI-algebras, we refer to [2, 7, 9, 12, 13].

Definition 1.2 ([8]). Let X be a BCI-algebra and f ∈ Hom(X). By a (l, r)-f -
derivation of X, we mean a self map df of X satisfying the identity df (x∗y) =
df (x) ∗ f(y) ∧ f(x) ∗ df (y) for all x, y ∈ X.

If X satisfies the identity df (x ∗ y) = f(x) ∗ df (y) ∧ df (x) ∗ f(y) for all
x, y ∈ X, then we say that df is a (r, l)-f -derivation of X. Moreover, if df is
both a (l, r) and a (r, l)-f -derivation, we say that df is an f -derivation of X.

Definition 1.3 ([15]). A self map df of a BCI-algebra X is said to be regular
if df (0) = 0.

Proposition 1.4 ([15]). Let df be a regular derivation of a BCI-algebra X.
Then the following hold.

(i) df (x) ≤ f(x) ∀ x ∈ X.
(ii) df (x) ∗ f(y) ≤ f(x) ∗ df (y) ∀ x, y ∈ X.
(iii) df (x ∗ y) = df (x) ∗ f(y) ≤ df (x) ∗ df (y) ∀ x, y ∈ X.
(iv) ker df is a subalgebra of X. Especially, if f is monic, then ker df ⊆ X+.

2. Some results on derivations

First, we study f -derivations on BCK-algebras.
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Proposition 2.1. Every (r, l)-f -derivation ((l, r)-f -derivation) of a BCK-
algebra is regular.

Proof. Let X be a BCK-algebra and df a (r, l)-f -derivation of X. Then for all
x ∈ X, we have:

df (0) = df (0 ∗ x) = f(0) ∗ df (x) ∧ df (0) ∗ f(x)

= 0 ∗ df (x) ∧ df (0) ∗ f(x) = 0 ∧ df (0) ∗ f(x) = 0.

Let df be a (l, r)-f -derivation of X. Then for all x ∈ X, we have:

df (0) = df (0 ∗ x) = df (0) ∗ f(x) ∧ f(0) ∗ df (x)

= df (0) ∗ f(x) ∧ 0 ∗ df (x) = df (0) ∗ f(x) ∧ 0 = 0. ¤

Proposition 2.2. Let f ∈ Epi(X), df be a f -derivation of a BCI-algebra X
and a ∈ X such that df (x) ∗ a = 0 and df (x) ∗ f(a) = 0 for all x ∈ X. Then
df is a regular f -derivation of X. Moreover, X is a BCK algebra.

Proof. Let df be a f -derivation of a BCI-algebra X and let a ∈ X such that
df (x) ∗ a = 0 and df (x) ∗ f(a) = 0 for all x ∈ X. Since df is (l, r)-f -derivation,
we have:

0 = df (x ∗ a) ∗ a = (df (x) ∗ f(a) ∧ f(x) ∗ df (a)) ∗ a

= (0 ∧ f(x) ∗ df (a)) ∗ a = 0 ∗ a,

this implies that 0 ≤ a, and therefore, a ∈ X+. This shows that

df (0) = df (0 ∗ a) = df (0) ∗ f(a) ∧ f(0) ∗ df (a)

= df (0) ∗ f(a) ∧ 0 ∗ df (a) = 0 ∧ 0 ∗ df (a) = 0.

Hence df is a regular f -derivation of X. So by Proposition 1.4 [15], we have
df (x) ≤ f(x) for all x ∈ X and so

0 ∗ f(x) ≤ 0 ∗ df (x) = (df (x) ∗ a) ∗ df (x) = (df (x) ∗ df (x)) ∗ a = 0 ∗ a = 0.

Thus 0 ∗ f(x) ≤ 0 for all x ∈ X and so 0 = (0 ∗ f(x)) ∗ 0 = 0 ∗ f(x). Then we
have 0 ≤ f(x) for all x ∈ X. Which implies that f(X) is a BCK-algebra. As
f ∈ Epi(X), therefore, f(X) = X. ¤

Similarly, we can prove:

Proposition 2.3. Let df be a f -derivation of a BCI-algebra X and a ∈ X
such that a∗df (x) = 0 and f(a)∗df (x) = 0 for all x ∈ X. Then df is a regular
f -derivation of X. Moreover, X is a BCK-algebra.

Example 2.4 ([3, page 8]). Let X be the set of natural number. For any
element x, y ∈ X define

(x ∗ y) =
{

0 if x ≤ y
x− y if x > y,

then X is a BCI-algebra.
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Define f : X → X by f(x) = 2x then f ∈ Epi(X), indeed f is an BCI-
isomorphism. Consider x, y ∈ X. If x ≤ y, then f(x ∗ y) = f(0) = 2(0) = 0,
f(x) ∗ f(y) = 2x ∗ 2y = 0. Hence f(x ∗ y) = f(x) ∗ f(y). If x > y, then
f(x∗y) = f(x−y) = 2(x−y) = f(x)∗f(y). This shows that f(x∗y) = f(x)∗f(y)
and hence f ∈ Hom(X). Obviously f is bijective, therefore f ∈ Epi(X).

Define df (x) = 0 for all x ∈ X. Then

df (x ∗ y) = 0,

df (x ∗ y) = df (x) ∗ f(y) ∧ f(x) ∗ df (y) = f(x) ∗ df (y) ∧ df (x) ∗ f(y)
= 0 ∗ 2y ∧ 2x ∗ 0
= 0 ∧ 2x = 0.

This shows that df is (l, r)-derivation. Similarly we can show that df is (r, l)-
derivation.

Also note that df (x)∗a = 0∗a = 0. This implies that 0 ≤ a for all a ∈ X and
hence X is a BCK-algebra. And df (x)∗f(a) = 0∗f(a) = 0, where f ∈ Epi(X).
Moreover, observe that X is commutative BCK-algebra (see [3]).

Finally, we study f -derivations of a p-semisimple BCI-algebras, Der(X) de-
notes the set of all f -derivations of X.

Definition 2.5. Let X be a BCI-algebra and df , d
′
f be two self maps of X.

We define df ◦ d
′
f : X → X as: (df ◦ d

′
f )(x) = df (d

′
f (x)) for all x ∈ X.

Proposition 2.6. Let X be a p-semisimple BCI-algebra, d
′
f and df are the

(l, r)-f -derivations of X. Then df ◦ d
′
f is also a (l, r)-f-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and d
′
f and df are (l, r)-f -deri-

vations of X. Then by (14) and Proposition 1.4(ii), we get for all x, y ∈ X:

(df ◦ d
′
f )(x ∗ y) = df (d

′
f (x) ∗ f(y) ∧ f(x) ∗ d

′
f (y)) = df (d

′
f (x) ∗ f(y))

= df (d
′
f (x)) ∗ f(y) ∧ f(d

′
f (x)) ∗ df (f(y)) = df (d

′
f (x)) ∗ f(y)

= (f(x) ∗ df (d
′
f (y))) ∗ (f(x) ∗ df (d

′
f (y))) ∗ (df (d

′
f (x)) ∗ f(y)))

= (df ◦ d
′
f )(x) ∗ f(y) ∧ f(x) ∗ (df ◦ d

′
f )(y).

Which implies that df ◦ d
′
f is a (l, r)-f -derivation of X. ¤

Similarly, we can prove:

Proposition 2.7. Let X be a p-semisimple BCI-algebra and df , d are (r, l)-
f -derivations of X. Then df ◦ d

′
f is also a (r, l)-f -derivation of X.

Combining Propositions 2.6 and 2.7, we get:

Theorem 2.8. Let X be a p-semisimple BCI-algebra and d
′
f and df be f -

derivations of X. Then df ◦ d
′
f is also a f-derivation of X.
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Proposition 2.9. Let X be a p-semisimple BCI-algebra and df , d
′
f be f -

derivations of X such that f ◦df = df ◦f , d
′
f ◦f = f ◦d′f . Then df ◦d′f = d

′
f ◦df .

Proof. Let X be a p-semisimple BCI-algebra and df , d
′
f the f -derivations of

X. Since d
′
f is a (l, r)-f -derivation of X, then for all x, y ∈ X:

df ◦ d
′
f (x ∗ y) = df (d

′
f (x ∗ y)) = df (d

′
f (x) ∗ f(y) ∧ f(x) ∗ d

′
f (y))

= df (d
′
f (x) ∗ f(y).

But df is a (r, l)-f -derivation of X, so

(df ◦ d
′
f )(x ∗ y) = df (d

′
f (x) ∗ f(y))

= f(d
′
f (x)) ∗ df (f(y)) ∧ df (d

′
f (x)) ∗ f(y)

= f(d
′
f (x)) ∗ df (f(y))

= f ◦ d
′
f (x) ∗ df ◦ f(y)

thus we have for all x, y ∈ X:

(2.1) (df ◦ d
′
f )(x ∗ y) = f ◦ d

′
f (x) ∗ df ◦ f(y).

Also, since df is a (r, l)-f -derivation of X, then for all x, y ∈ X:

(d
′
f ◦ df )(x ∗ y) = d

′
f (f(x) ∗ df (y) ∧ df (x) ∗ f(y))

= d
′
f (f(x) ∗ df (y)).

But d
′
f is a (l, r)-f -derivation of X, so

(d
′
f ◦ df )(x ∗ y) = d

′
f (f(x) ∗ df (y))

= d
′
f (f(x)) ∗ f(df (y)) ∧ f2(x) ∗ d

′
f (df (y))

= d
′
f (f(x)) ∗ f(df (y))

= d
′
f ◦ f(x) ∗ f ◦ df (y)

= f ◦ d
′
f (x) ∗ df ◦ f(y).

Thus we have for all x, y ∈ X:

(2.2) (d
′
f ◦ df )(x ∗ y) = f ◦ d

′
f (x) ∗ df ◦ f(y).

From (2.1) and (2.2) we get for all x, y ∈ X:

(df ◦ d
′
f )(x ∗ y) = (d

′
f ◦ df )(x ∗ y).

By putting y = 0 we get for all x ∈ X:

(df ◦ d
′
f )(x) = (d

′
f ◦ df )(x).

Which implies that df ◦ d
′
f = d

′
f ◦ df . ¤
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Definition 2.10. Let X be a BCI-algebra and df , d
′
f , two self maps of X. We

define df • d
′
f : X → X as:

(df • d
′
f )(x) = df (x) • d

′
f (x) for all x ∈ X.

Proposition 2.11. Let X be a p-semisimple BCI-algebra, f ∈ Epi(X) and df ,

d
′
f are f -derivations of X. Then (f ◦ d

′
f ) • (df ◦ f) = (df ◦ f) • (f ◦ d

′
f ).

Proof. Let X is a p-semisimple BCI-algebra and df , d
′
f be f -derivations of X.

Since d
′
f is a (l, r)-f -derivation of X, then for all x, y ∈ X:

(df ◦ d
′
f )(x • y) = df (d

′
f (x) • f(y) ∧ f(x) • d

′
f (y) = df (d

′
f (x) • f(y)).

But df is a (r, l)-f -derivation of X, so

df (d
′
f (x) • f(y)) = f(d

′
f (x)) • df (f(y)) ∧ df (d

′
f (x)) • f(y)

= f(d
′
f (x)) • df (f(y))

= f ◦ d
′
f (x)) • df ◦ f(y))

and hence

(2.3) (df ◦ d
′
f )(x • y) = f ◦ d

′
f (x)) • df ◦ f(y)) for all x, y ∈ X.

Also, we have that d
′
f is a (r, l)-f -derivation of X, then for all x, y ∈ X:

(df ◦ d
′
f )(x • y) = df (f(x) • d

′
f (y) ∧ d

′
f (x) • f(y)) = df (f(x) • d

′
f (y)).

But df is a (l, r)-f -derivation of X, so

df (f(x) • d
′
f (y)) = df (f(x)) • f(d

′
f (y)) ∧ f2(x) • df (d

′
f (y))

= df (f(x)) • f(d
′
f (y)).

Thus

(2.4) (df ◦ d
′
f )(x • y) = df ◦ f(x)) • f ◦ d

′
f (y)) for all x, y ∈ X.

From (2.3) and (2.4) we get:

f ◦ d
′
f (x) • df ◦ f(y) = df ◦ f(x) • f ◦ d

′
f (y) for all x, y ∈ X.

By putting x = y we get for all x ∈ X:

f ◦ d
′
f (x) • df ◦ f(x) = df ◦ f(x) • f ◦ d

′
f (x),

(f ◦ d
′
f • df ◦ f)(x) = (df ◦ f • f ◦ d

′
f )(x).

Which implies that (f ◦ d
′
f ) • (df ◦ f) = (df ◦ f) • (f ◦ d

′
f ). ¤
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3. Der(X), set of all f-Derivations

Der(X) denotes the set of all f -derivations on X.

Definition 3.1. Let df , d
′
f ∈ Der(X). Define the binary operation ∧ as:

(df ∧ d
′
f )(x) = df (x) ∧ d

′
f (x).

Proposition 3.2. Let X be a p-semisimple BCI algebra and df , d
′
f are (l, r)-

f -derivations of X. Then df∧ d
′
f is also a (l, r)-f -derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and df , d
′
f are (l, r)-f -derivations

of X. Then by (14) and Proposition 1.4, we have

(df ∧ d
′
f )(x ∗ y)

= df (x ∗ y) ∧ d
′
f (x ∗ y)

= {((df (x) ∗ f(y)) ∧ (f(x) ∗ df (y))} ∧ {(d′f (x) ∗ f(y)) ∧ (f(x) ∗ d
′
f (y))},

(df ∧ d
′
f )(x ∗ y)

= (df (x) ∗ f(y)) ∧ (d
′
f (x) ∗ f(y))

= df (x) ∗ f(y)

= (d
′
f (x) ∗ (d

′
f (x) ∗ df (x))) ∗ f(y)

= (df (x) ∧ d
′
f (x)) ∗ f(y)

= (df ∧ d
′
f )(x) ∗ f(y)

= (f(x) ∗ (df ∧ d
′
f )(y)) ∗ {(f(x) ∗ (df ∧ d

′
f )(y)) ∗ ((df ∧ d

′
f )(x)) ∗ f(y)}

= ((df ∧ d
′
f )(x) ∗ f(y)) ∧ (f(x) ∗ (df ∧ d

′
f )(y)) = (df ∧ d

′
f )(x ∗ y).

This shows that (df∧ d
′
f ) is a (l, r)-f -derivation of X. This completes the

proof. ¤
In the similar fashion, we can establish the following.

Proposition 3.3. Let X be a p-semisimple BCI-algebra and df , d
′
f are (r, l)-

f -derivations of X. Then df∧ d
′
f is also a (r, l)-f -derivation of X.

By using the Propositions 3.2, 3.3, we conclude the following.

Proposition 3.4. If df , d
′
f ∈ Der(X), then df∧ d

′
f ∈ Der(X). Also, (df∧

(d
′
f∧ d

′′
f ))(x ∗ y) = ((df∧ d

′
f )∧ d

′′
f )(x ∗ y).

Let df , d
′
f , d

′′
f ∈ Der(X). Then by definition,

((df ∧ d
′
f ) ∧ d

′′
f )(x ∗ y)

= (df ∧ d
′
f )(x ∗ y) ∧ d

′′
f (x ∗ y)



328 MALIK ANJUM JAVED AND MUHAMMAD ASLAM

= (d
′′
f (x ∗ y)) ∗ (d

′′
f (x ∗ y) ∗ (df ∧ d

′
f )(x ∗ y))

= (df ∧ d
′
f )(x ∗ y)

= df (x ∗ y) ∧ d
′
f (x ∗ y)

= (df (x) ∗ f(y) ∧ f(x) ∗ df (y)) ∧ (d
′
f (x) ∗ f(y) ∧ f(x) ∗ d

′
f (y))

= df (x) ∗ f(y) ∧ d
′
f (x) ∗ f(y)

= df (x) ∗ f(y).

Also consider the following,

(df ∧ (d
′
f ∧ d

′′
f ))(x ∗ y)

= df (x ∗ y) ∧ (d
′
f ∧ d

′′
f )(x ∗ y)

= df (x ∗ y) ∧ ((d
′
f (x ∗ y) ∧ d

′′
f (x ∗ y))

= df (x ∗ y) ∧ d
′
f (x ∗ y)

= (df (x) ∗ f(y) ∧ f(x) ∗ df (y)) ∧ (d
′
f (x) ∗ f(y) ∧ f(x) ∗ d

′
f (y))

= df (x) ∗ f(y) ∧ d
′
f (x) ∗ f(y)

= df (x) ∗ f(y).

This shows that (df∧ d
′
f )∧ d

′′
f = df∧ (d

′
f∧ d

′′
f ). Thus Der(X) forms a semi-

group.

Corollary 3.5. If X is a p-semisimple BCI-algebra, then (Der(X),∧) is a
semigroup.

Let we take f as an identity map, i.e., df = dI = d in the following examples.

Example 3.6. If X = {0, a, b} and binary operation ∗ is defined as

∗ 0 a b
0 0 b a
a a 0 b
b b a 0

then it forms a p-semisimple BCI-algebra (see [3]). Moreover if I is an identity
mapping, I ∈ Epi(X), then Der(X) associated to I is only {I}, which is indeed
a semigroup in view of Definition 3.1.

However, we can also observe from the following example that if X is not a
p-semisimple BCI-algebra, then Der(X) may also form a semigroup.

Example 3.7. Let X = {0, a, b} be a commutative BCK-algebra with binary
operation ∗ as defined in the following table:

∗ 0 a b
0 0 0 0
a a 0 a
b b b 0
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Let Der(X) set of all derivations of X. If d ∈ Der(X), then d(0) = 0 since X is
a BCK-algebra.

Now 0 can be associated under d in one way. Now d(0) = 0 and X is
a commutative BCK-algebras therefore d(x ∗ y) = d(x) ∗ y and d(x) ≤ x.
This shows that a and b can be associated under d in 2 ways each and hence
| Der(X) | ≤ 1× 2× 2 = 4, which are the following:

d1(x) = 0 for all x ∈ X, d1 ∈ Der(X).
d2(0) = 0, d2(a) = 0, d2(b) = b,
d3(0) = 0, d3(a) = a, d3(b) = 0,
d4(0) = 0, d4(a) = a, d4(b) = b,
Der(X) = {d1, d2, d3, d4} .

Since X is a commutative BCK-algebra therefore Der(X) = {d1, d2, d3, d4}
form a commutative semigroup as shown in the following table:

∧ d1 d2 d3 d4

d1 d1 d1 d1 d1

d2 d1 d2 d1 d2

d3 d1 d1 d3 d3

d4 d1 d2 d3 d4

Remark 3.8. If X is a commutative BCI-algebra, then from the Definition 1.2
if f is considered as identity map, then it follows that

d(x) ≤ x ∗ d(0).

This shows that d(x), x ∗ d(0) always lies in the same branch. If d(0) = 0,
then d(x) ≤ x. This shows that d(x) and x lies in the same branch. We will
use these observation in the following example.

The following example reflect that if X is a commutative BCI-algebra which
is not a p-semisimple BCI-algebra, then under the binary operation defined in
Definition 3.1, Der(X) does not form a semigroup. However, it is a groupoid.

Example 3.9. If X = {0, a, b} and binary operation ∗ is defined as

∗ 0 a b
0 0 0 b
a a 0 b
b b b 0

d(0) = 0 and d(0) = b, then in the light of above said remarks

Case 1: d(0) = 0, then d(x) ≤ x ∗ d(0) implies that d(x) ≤ x, so

(i) d(a) ≤ a ⇒ Either d(a) = 0 or d(0) = a,
(ii) d(b) ≤ b ∗ 0 = b.
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Then possible derivations are

d1(0) = 0, d1(a) = 0, d1(b) = b,

d2(0) = 0, d2(a) = a, d2(b) = b,

D1(X) = {d1, d2} .

Case 2: d(0) = b, so,
(i) d(a) ≤ a ∗ d(0) = a ∗ b = b

⇒ d(a) ≤ b
⇒ d(a) = b,

(ii) d(b) ≤ b ∗ b = 0.
Then possible derivation is

f1(0) = b, f1(a) = b,1 (b) = 0,

D2(X) = {f1} ,

D(X) = D1(X) ∪D2(X) = {d1, d2.f1} ,

∧ d1 d2 f1

d1 d1 d1 d1

d2 d1 d2 d1

f1 f1 f1 f1

Proposition 3.10. Let X be a p-semisimple BCI-algebra and df , d
′
f are f -

derivations of X. Then df (x) ∗ f(x) = d
′
f (x) ∗ f(x) if df (x), d

′
f (x) lie in the

same branch.

Proof. Let x, y ∈ X, then by (14), Definition 3.1 and Theorem 1.1, we have

(df ∗ d
′
f )(x ∗ y) = df (x ∗ y) ∧ d

′
f (x ∗ y)

= df (x) ∗ f(y) ∧ f(x) ∗ df (y)(3.1)

= df (x) ∗ f(y).

Now consider

(df ∗ d
′
f )(x ∗ y) = df (x ∗ y) ∧ d

′
f (x ∗ y)

= d
′
f (x ∗ y) ∧ df (x ∗ y)

= d
′
f (x ∗ y)(3.2)

= d
′
f (x) ∗ f(y) ∧ f(x) ∗ d

′
f (y)

= d
′
f (x) ∗ f(y).

From (3.1) and (3.2), d
′
f (x)∗f(y) = df (x)∗f(y), hence for y = x, d

′
f (x)∗f(x) =

df (x) ∗ f(x).
This completes the proof. ¤
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