A NOTE ON *f*-DERIVATIONS OF BCI-ALGEBRAS

MALIK ANJUM JAVED AND MUHAMMAD ASLAM

ABSTRACT. In this paper, we investigate some fundamental properties and establish some results of f-derivations of BCI-algebras. Also, we prove Der(X), the collection of all f-derivations, form a semigroup under certain binary operation.

1. Introduction and preliminaries

BCI-algebra has been developed from BCI-logic on the similar way as Boolean algebra was developed from Boolean logic which have a lot of application in computer sciences ([14]). Recently greater interest has been developed in the derivation of BCI-algebras, introduced by Y. B. Jun and X. L. Xin [8], which was motivated from a lot of work done on derivations of rings and Near rings (see [9, 11]). The notion was further explored in the form of f-derivations of BCI-algebras by J. M. Zhan and Y. L. Liu [15]. In this paper, we prove some results on f-derivations of BCI-algebras. First, we show that an f-derivation of BCK-algebra is regular. However, we are able to show that under certain conditions namely, for $a \in X$, $f(a) * d_f(x) = 0$ or $d_f(x) * f(a) = 0$, for all $x \in X$ the f-derivation, d_f , of a BCI-algebra X is regular and X is a BCK-algebra. Also, we study derivations in a p-semisimple BCI-algebra and show that if d_f, d'_f are f-derivations in X, then $d_f \circ d'_f$ is also a f-derivation and $d_f \circ d'_f =$ $d'_{f} \circ d_{f}$. Consequently it is shown that $(f \circ d'_{f}) \bullet (d_{f} \circ f) = (d_{f} \circ f) \bullet (f \circ d'_{f})$. Now, we include necessary preliminaries required for the sequel. (X, *, 0) with a binary operation * and distinguished element 0 is called a BCI-algebra, if it satisfies the following axioms for all $x, y, z \in X$.

(BCI-1) $((x * y) * (x * z)) \le (z * y).$

 $(BCI-2) (x * (x * y)) \le y.$

(BCI-3) $x \leq x$.

(BCI-4) $x \le y$ and $y \le x$ imply x = y,

where \leq is defined as $x \leq y$ if and only if x * y = 0.

Also, (X, \leq) is a partially ordered set. A BCI-algebra X satisfying $0 \leq x$, for all $x \in X$, is called a BCK-algebra. If A is a branch of X, then X is said to

©2009 The Korean Mathematical Society

Received April 19, 2008; Revised October 30, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

Key words and phrases. f-derivation, p-semisimple, BCI-algebras.

be commutative on A if $x \wedge y = y \wedge x$ for all $x, y \in A$, where $x \wedge y = y * (y * x)$. In any BCI-algebra X, the following properties are valid (see [1, 7]) for all $x, y, z \in X$:

(1) x * 0 = x. (2) (x * y) * z = (x * z) * y. (3) $x \le y$ implies that $x * z \le y * z$, $z * y \le z * x$. (4) $(x * z) * (y * z) \le x * y$. (5) x * (x * (x * y)) = x * y. (6) 0 * (x * y) = (0 * x) * (0 * y). (7) x * 0 = 0 implies x = 0.

For a BCI-algebra X, we define $X_+ = \{x \in X : 0 \le X\}$, the BCK-part of X, $G(X) = \{x \in X : 0 * x = x\}$, the BCI-G part of X. If $X_+ = \{0\}$, then X is called a p-semisimple BCI-algebra. If X is a p-semisimple BCI-algebra, then the following properties are valid for all $x, y, z \in X$ [3, 4, 5, 11].

(8) (x * z) * (y * z) = x * y. (9) (0 * (0 * x)) = x for all $x \in X$. (10) (x * (0 * y)) = y * (0 * x). (11) x * y = 0 implies x = y. (12) x * a = x * b implies a = b. (13) a * x = b * x implies a = b. (14) a * (a * x) = x.

Theorem 1.1 ([8, Theorem 3.4]). Let X be a BCI-algebra. X is commutative if and only if it is branch wise commutative.

On commutative BCI-algebras, we refer to [2, 7, 9, 12, 13].

Definition 1.2 ([8]). Let X be a BCI-algebra and $f \in \text{Hom}(X)$. By a (l, r)-f-derivation of X, we mean a self map d_f of X satisfying the identity $d_f(x * y) = d_f(x) * f(y) \wedge f(x) * d_f(y)$ for all $x, y \in X$.

If X satisfies the identity $d_f(x * y) = f(x) * d_f(y) \wedge d_f(x) * f(y)$ for all $x, y \in X$, then we say that d_f is a (r, l)-f-derivation of X. Moreover, if d_f is both a (l, r) and a (r, l)-f-derivation, we say that d_f is an f-derivation of X.

Definition 1.3 ([15]). A self map d_f of a BCI-algebra X is said to be regular if $d_f(0) = 0$.

Proposition 1.4 ([15]). Let d_f be a regular derivation of a BCI-algebra X. Then the following hold.

(i) d_f(x) ≤ f(x) ∀ x ∈ X.
(ii) d_f(x) * f(y) ≤ f(x) * d_f(y) ∀ x, y ∈ X.
(iii) d_f(x * y) = d_f(x) * f(y) ≤ d_f(x) * d_f(y) ∀ x, y ∈ X.
(iv) ker d_f is a subalgebra of X. Especially, if f is monic, then ker d_f ⊆ X₊.

2. Some results on derivations

First, we study f-derivations on BCK-algebras.

Proposition 2.1. Every (r, l)-f-derivation ((l, r)-f-derivation) of a BCKalgebra is regular.

Proof. Let X be a BCK-algebra and d_f a (r, l)-f-derivation of X. Then for all $x \in X$, we have:

$$d_f(0) = d_f(0 * x) = f(0) * d_f(x) \wedge d_f(0) * f(x)$$

= 0 * d_f(x) \land d_f(0) * f(x) = 0 \land d_f(0) * f(x) = 0.

Let d_f be a (l, r)-f-derivation of X. Then for all $x \in X$, we have:

$$d_f(0) = d_f(0 * x) = d_f(0) * f(x) \wedge f(0) * d_f(x)$$

= $d_f(0) * f(x) \wedge 0 * d_f(x) = d_f(0) * f(x) \wedge 0 = 0.$

Proposition 2.2. Let $f \in \text{Epi}(X)$, d_f be a f-derivation of a BCI-algebra X and $a \in X$ such that $d_f(x) * a = 0$ and $d_f(x) * f(a) = 0$ for all $x \in X$. Then d_f is a regular f-derivation of X. Moreover, X is a BCK algebra.

Proof. Let d_f be a *f*-derivation of a BCI-algebra X and let $a \in X$ such that $d_f(x) * a = 0$ and $d_f(x) * f(a) = 0$ for all $x \in X$. Since d_f is (l, r)-*f*-derivation, we have:

$$0 = d_f(x * a) * a = (d_f(x) * f(a) \land f(x) * d_f(a)) * a$$

= $(0 \land f(x) * d_f(a)) * a = 0 * a,$

this implies that $0 \leq a$, and therefore, $a \in X_+$. This shows that

$$d_f(0) = d_f(0 * a) = d_f(0) * f(a) \wedge f(0) * d_f(a)$$

= $d_f(0) * f(a) \wedge 0 * d_f(a) = 0 \wedge 0 * d_f(a) = 0.$

Hence d_f is a regular f-derivation of X. So by Proposition 1.4 [15], we have $d_f(x) \leq f(x)$ for all $x \in X$ and so

$$0 * f(x) \le 0 * d_f(x) = (d_f(x) * a) * d_f(x) = (d_f(x) * d_f(x)) * a = 0 * a = 0.$$

Thus $0 * f(x) \leq 0$ for all $x \in X$ and so 0 = (0 * f(x)) * 0 = 0 * f(x). Then we have $0 \leq f(x)$ for all $x \in X$. Which implies that f(X) is a BCK-algebra. As $f \in \operatorname{Epi}(X)$, therefore, f(X) = X.

Similarly, we can prove:

Proposition 2.3. Let d_f be a *f*-derivation of a BCI-algebra X and $a \in X$ such that $a * d_f(x) = 0$ and $f(a) * d_f(x) = 0$ for all $x \in X$. Then d_f is a regular *f*-derivation of X. Moreover, X is a BCK-algebra.

Example 2.4 ([3, page 8]). Let X be the set of natural number. For any element $x, y \in X$ define

$$(x * y) = \begin{cases} 0 & \text{if } x \le y \\ x - y & \text{if } x > y, \end{cases}$$

then X is a BCI-algebra.

Define $f: X \to X$ by f(x) = 2x then $f \in \operatorname{Epi}(X)$, indeed f is an BCIisomorphism. Consider $x, y \in X$. If $x \leq y$, then f(x * y) = f(0) = 2(0) = 0, f(x) * f(y) = 2x * 2y = 0. Hence f(x * y) = f(x) * f(y). If x > y, then f(x*y) = f(x-y) = 2(x-y) = f(x)*f(y). This shows that f(x*y) = f(x)*f(y)and hence $f \in \operatorname{Hom}(X)$. Obviously f is bijective, therefore $f \in \operatorname{Epi}(X)$.

Define $d_f(x) = 0$ for all $x \in X$. Then

$$d_f(x * y) = 0,$$

$$d_f(x * y) = d_f(x) * f(y) \wedge f(x) * d_f(y) = f(x) * d_f(y) \wedge d_f(x) * f(y)$$

$$= 0 * 2y \wedge 2x * 0$$

$$= 0 \wedge 2x = 0.$$

This shows that d_f is (l, r)-derivation. Similarly we can show that d_f is (r, l)-derivation.

Also note that $d_f(x) * a = 0 * a = 0$. This implies that $0 \le a$ for all $a \in X$ and hence X is a BCK-algebra. And $d_f(x) * f(a) = 0 * f(a) = 0$, where $f \in \text{Epi}(X)$. Moreover, observe that X is commutative BCK-algebra (see [3]).

Finally, we study f-derivations of a p-semisimple BCI-algebras, Der(X) denotes the set of all f-derivations of X.

Definition 2.5. Let X be a BCI-algebra and d_f , d'_f be two self maps of X. We define $d_f \circ d'_f : X \to X$ as: $(d_f \circ d'_f)(x) = d_f(d'_f(x))$ for all $x \in X$.

Proposition 2.6. Let X be a p-semisimple BCI-algebra, d'_f and d_f are the (l,r)-f-derivations of X. Then $d_f \circ d'_f$ is also a (l,r)-f-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and d_f and d_f are (l, r)-f-derivations of X. Then by (14) and Proposition 1.4(ii), we get for all $x, y \in X$:

$$\begin{aligned} (d_f \circ d_f)(x * y) &= d_f(d_f(x) * f(y) \wedge f(x) * d_f(y)) = d_f(d_f(x) * f(y)) \\ &= d_f(d_f(x)) * f(y) \wedge f(d_f(x)) * d_f(f(y)) = d_f(d_f(x)) * f(y) \\ &= (f(x) * d_f(d_f(y))) * (f(x) * d_f(d_f(y))) * (d_f(d_f(x)) * f(y))) \\ &= (d_f \circ d_f(x) * f(y) \wedge f(x) * (d_f \circ d_f(y))) \end{aligned}$$

Which implies that $d_f \circ d'_f$ is a (l, r)-f-derivation of X.

Similarly, we can prove:

Proposition 2.7. Let X be a p-semisimple BCI-algebra and d_f , d are (r, l)-f-derivations of X. Then $d_f \circ d'_f$ is also a (r, l)-f-derivation of X.

Combining Propositions 2.6 and 2.7, we get:

Theorem 2.8. Let X be a p-semisimple BCI-algebra and d'_f and d_f be fderivations of X. Then $d_f \circ d'_f$ is also a f-derivation of X.

Proposition 2.9. Let X be a p-semisimple BCI-algebra and d_f, d'_f be fderivations of X such that $f \circ d_f = d_f \circ f, d'_f \circ f = f \circ d'_f$. Then $d_f \circ d'_f = d'_f \circ d_f$.

Proof. Let X be a p-semisimple BCI-algebra and d_f, d'_f the f-derivations of X. Since d'_f is a (l, r)-f-derivation of X, then for all $x, y \in X$:

$$\begin{aligned} d_f \circ d'_f(x * y) &= d_f(d'_f(x * y)) = d_f(d'_f(x) * f(y) \wedge f(x) * d'_f(y)) \\ &= d_f(d'_f(x) * f(y). \end{aligned}$$

But d_f is a (r, l)-f-derivation of X, so

$$\begin{aligned} (d_f \circ d'_f)(x * y) &= d_f(d'_f(x) * f(y)) \\ &= f(d'_f(x)) * d_f(f(y)) \wedge d_f(d'_f(x)) * f(y) \\ &= f(d'_f(x)) * d_f(f(y)) \\ &= f \circ d'_f(x) * d_f \circ f(y) \end{aligned}$$

thus we have for all $x, y \in X$:

(2.1)
$$(d_f \circ d'_f)(x * y) = f \circ d'_f(x) * d_f \circ f(y).$$

Also, since d_f is a (r, l)-f-derivation of X, then for all $x, y \in X$:

$$\begin{aligned} (d'_f \circ d_f)(x * y) &= d'_f(f(x) * d_f(y) \wedge d_f(x) * f(y)) \\ &= d'_f(f(x) * d_f(y)). \end{aligned}$$

But d'_f is a (l, r)-f-derivation of X, so

$$\begin{aligned} (d'_f \circ d_f)(x * y) &= d'_f(f(x) * d_f(y)) \\ &= d'_f(f(x)) * f(d_f(y)) \wedge f^2(x) * d'_f(d_f(y)) \\ &= d'_f(f(x)) * f(d_f(y)) \\ &= d'_f \circ f(x) * f \circ d_f(y) \\ &= f \circ d'_f(x) * d_f \circ f(y). \end{aligned}$$

Thus we have for all $x, y \in X$:

(2.2)
$$(d'_f \circ d_f)(x * y) = f \circ d'_f(x) * d_f \circ f(y).$$

From (2.1) and (2.2) we get for all $x, y \in X$:

$$(d_f\circ d_f^{'})(x\ast y)=(d_f^{'}\circ d_f)(x\ast y).$$

By putting y = 0 we get for all $x \in X$:

$$(d_f \circ d'_f)(x) = (d'_f \circ d_f)(x)$$

Which implies that $d_f \circ d'_f = d'_f \circ d_f$.

Definition 2.10. Let X be a BCI-algebra and d_f, d'_f , two self maps of X. We define $d_f \bullet d'_f : X \to X$ as:

$$(d_f \bullet d'_f)(x) = d_f(x) \bullet d'_f(x)$$
 for all $x \in X$.

Proposition 2.11. Let X be a p-semisimple BCI-algebra, $f \in \text{Epi}(X)$ and d_f , d'_f are f-derivations of X. Then $(f \circ d'_f) \bullet (d_f \circ f) = (d_f \circ f) \bullet (f \circ d'_f)$.

Proof. Let X is a p-semisimple BCI-algebra and d_f, d'_f be f-derivations of X. Since d'_f is a (l, r)-f-derivation of X, then for all $x, y \in X$:

$$(d_f \circ d'_f)(x \bullet y) = d_f(d'_f(x) \bullet f(y) \land f(x) \bullet d'_f(y) = d_f(d'_f(x) \bullet f(y)).$$

But d_f is a (r, l)-f-derivation of X, so

$$d_f(d'_f(x) \bullet f(y)) = f(d'_f(x)) \bullet d_f(f(y)) \wedge d_f(d'_f(x)) \bullet f(y)$$
$$= f(d'_f(x)) \bullet d_f(f(y))$$
$$= f \circ d'_f(x)) \bullet d_f \circ f(y))$$

and hence

(2.3)
$$(d_f \circ d'_f)(x \bullet y) = f \circ d'_f(x)) \bullet d_f \circ f(y)) \text{ for all } x, y \in X.$$

Also, we have that $d_{f}^{'}$ is a (r, l)-f-derivation of X, then for all $x, y \in X$:

$$(d_f \circ d'_f)(x \bullet y) = d_f(f(x) \bullet d'_f(y) \land d'_f(x) \bullet f(y)) = d_f(f(x) \bullet d'_f(y)).$$

But d_f is a (l, r)-f-derivation of X, so

$$d_f(f(x) \bullet d'_f(y)) = d_f(f(x)) \bullet f(d'_f(y)) \wedge f^2(x) \bullet d_f(d'_f(y))$$
$$= d_f(f(x)) \bullet f(d'_f(y)).$$

Thus

(2.4)
$$(d_f \circ d'_f)(x \bullet y) = d_f \circ f(x)) \bullet f \circ d'_f(y)) \text{ for all } x, y \in X.$$

From (2.3) and (2.4) we get:

$$f \circ d'_f(x) \bullet d_f \circ f(y) = d_f \circ f(x) \bullet f \circ d'_f(y)$$
 for all $x, y \in X$.

By putting x = y we get for all $x \in X$:

$$\begin{split} f \circ d'_f(x) \bullet d_f \circ f(x) &= d_f \circ f(x) \bullet f \circ d'_f(x), \\ (f \circ d'_f \bullet d_f \circ f)(x) &= (d_f \circ f \bullet f \circ d'_f)(x). \end{split}$$

Which implies that $(f \circ d'_f) \bullet (d_f \circ f) = (d_f \circ f) \bullet (f \circ d'_f).$

3. Der(X), set of all *f*-Derivations

Der(X) denotes the set of all f-derivations on X.

Definition 3.1. Let $d_f, d'_f \in Der(X)$. Define the binary operation \wedge as:

$$(d_f \wedge d'_f)(x) = d_f(x) \wedge d'_f(x).$$

Proposition 3.2. Let X be a p-semisimple BCI algebra and d_f, d'_f are (l, r)f-derivations of X. Then $d_f \wedge d'_f$ is also a (l, r)-f-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and d_f, d'_f are (l, r)-f-derivations of X. Then by (14) and Proposition 1.4, we have

$$\begin{aligned} (d_f \wedge d'_f)(x * y) \\ &= d_f(x * y) \wedge d'_f(x * y) \\ &= \{ ((d_f(x) * f(y)) \wedge (f(x) * d_f(y)) \} \wedge \{ (d'_f(x) * f(y)) \wedge (f(x) * d'_f(y)) \}, \\ (d_f \wedge d'_f)(x * y) \\ &= (d_f(x) * f(y)) \wedge (d'_f(x) * f(y)) \\ &= d_f(x) * f(y) \\ &= (d_f(x) \wedge d'_f(x)) * f(y) \\ &= (d_f(x) \wedge d'_f(x)) * f(y) \\ &= (d_f \wedge d'_f)(x) * f(y) \\ &= (f(x) * (d_f \wedge d'_f)(y)) * \{ (f(x) * (d_f \wedge d'_f)(y)) * ((d_f \wedge d'_f)(x)) * f(y) \} \\ &= ((d_f \wedge d'_f)(x) * f(y)) \wedge (f(x) * (d_f \wedge d'_f)(y)) = (d_f \wedge d'_f)(x * y). \end{aligned}$$

This shows that $(d_f \wedge d'_f)$ is a (l, r)-f-derivation of X. This completes the proof.

In the similar fashion, we can establish the following.

Proposition 3.3. Let X be a p-semisimple BCI-algebra and d_f, d'_f are (r, l)-f-derivations of X. Then $d_f \wedge d'_f$ is also a (r, l)-f-derivation of X.

By using the Propositions 3.2, 3.3, we conclude the following.

Proposition 3.4. If $d_f, d'_f \in \text{Der}(X)$, then $d_f \wedge d'_f \in \text{Der}(X)$. Also, $(d_f \wedge (d'_f \wedge d''_f))(x * y) = ((d_f \wedge d'_f) \wedge d''_f)(x * y)$.

Let $d_f, d'_f, d''_f \in \text{Der}(X)$. Then by definition,

$$\begin{aligned} &((d_f \wedge d'_f) \wedge d''_f)(x * y) \\ &= (d_f \wedge d'_f)(x * y) \wedge d''_f(x * y) \end{aligned}$$

$$= (d''_f(x * y)) * (d''_f(x * y) * (d_f \wedge d'_f)(x * y))$$

= $(d_f \wedge d'_f)(x * y)$
= $d_f(x * y) \wedge d'_f(x * y)$
= $(d_f(x) * f(y) \wedge f(x) * d_f(y)) \wedge (d'_f(x) * f(y) \wedge f(x) * d'_f(y))$
= $d_f(x) * f(y) \wedge d'_f(x) * f(y)$
= $d_f(x) * f(y)$.

Also consider the following,

$$\begin{aligned} (d_f \wedge (d'_f \wedge d''_f))(x * y) \\ &= d_f(x * y) \wedge (d'_f \wedge d''_f)(x * y) \\ &= d_f(x * y) \wedge ((d'_f(x * y) \wedge d''_f(x * y)) \\ &= d_f(x * y) \wedge d'_f(x * y) \\ &= (d_f(x) * f(y) \wedge f(x) * d_f(y)) \wedge (d'_f(x) * f(y) \wedge f(x) * d'_f(y)) \\ &= d_f(x) * f(y) \wedge d'_f(x) * f(y) \\ &= d_f(x) * f(y). \end{aligned}$$

This shows that $(d_f \wedge d'_f) \wedge d''_f = d_f \wedge (d'_f \wedge d''_f)$. Thus Der(X) forms a semigroup.

Corollary 3.5. If X is a p-semisimple BCI-algebra, then $(Der(X), \wedge)$ is a semigroup.

Let we take f as an identity map, i.e., $d_f = d_I = d$ in the following examples. Example 3.6. If $X = \{0, a, b\}$ and binary operation * is defined as

$$\begin{array}{c|cccc} * & 0 & a & b \\ \hline 0 & 0 & b & a \\ a & a & 0 & b \\ b & b & a & 0 \end{array}$$

then it forms a p-semisimple BCI-algebra (see [3]). Moreover if I is an identity mapping, $I \in \text{Epi}(X)$, then Der(X) associated to I is only $\{I\}$, which is indeed a semigroup in view of Definition 3.1.

However, we can also observe from the following example that if X is not a p-semisimple BCI-algebra, then Der(X) may also form a semigroup.

Example 3.7. Let $X = \{0, a, b\}$ be a commutative BCK-algebra with binary operation * as defined in the following table:

*	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Let Der(X) set of all derivations of X. If $d \in Der(X)$, then d(0) = 0 since X is a BCK-algebra.

Now 0 can be associated under d in one way. Now d(0) = 0 and X is a commutative BCK-algebras therefore d(x * y) = d(x) * y and $d(x) \le x$. This shows that a and b can be associated under d in 2 ways each and hence $|\operatorname{Der}(X)| \le 1 \times 2 \times 2 = 4$, which are the following:

 $\begin{aligned} &d_1(x) = 0 \text{ for all } x \in X, \, d_1 \in \operatorname{Der}(X). \\ &d_2(0) = 0, d_2(a) = 0, d_2(b) = b, \\ &d_3(0) = 0, d_3(a) = a, d_3(b) = 0, \\ &d_4(0) = 0, d_4(a) = a, d_4(b) = b, \\ &\operatorname{Der}(X) = \{d_1, d_2, d_3, d_4\}. \end{aligned}$

Since X is a commutative BCK-algebra therefore $Der(X) = \{d_1, d_2, d_3, d_4\}$ form a commutative semigroup as shown in the following table:

\wedge	d_1	d_2	d_3	d_4
d_1	d_1	d_1	d_1	d_1
d_2	d_1	d_2	d_1	d_2
d_3	d_1	d_1	d_3	d_3
d_4	d_1	d_2	d_3	d_4

Remark 3.8. If X is a commutative BCI-algebra, then from the Definition 1.2 if f is considered as identity map, then it follows that

$$d(x) \le x * d(0).$$

This shows that d(x), x * d(0) always lies in the same branch. If d(0) = 0, then $d(x) \le x$. This shows that d(x) and x lies in the same branch. We will use these observation in the following example.

The following example reflect that if X is a commutative BCI-algebra which is not a p-semisimple BCI-algebra, then under the binary operation defined in Definition 3.1, Der(X) does not form a semigroup. However, it is a groupoid.

Example 3.9. If $X = \{0, a, b\}$ and binary operation * is defined as

$$\begin{array}{c|cccc} * & 0 & a & b \\ \hline 0 & 0 & 0 & b \\ a & a & 0 & b \\ b & b & b & 0 \end{array}$$

d(0) = 0 and d(0) = b, then in the light of above said remarks

Case 1:
$$d(0) = 0$$
, then $d(x) \le x * d(0)$ implies that $d(x) \le x$, so
(i) $d(a) \le a \Rightarrow$ Either $d(a) = 0$ or $d(0) = a$,
(ii) $d(b) \le b * 0 = b$.

Then possible derivations are

$$d_1(0) = 0, \ d_1(a) = 0, \ d_1(b) = b,$$

$$d_2(0) = 0, \ d_2(a) = a, \ d_2(b) = b,$$

$$D_1(X) = \{d_1, d_2\}.$$

 $D_1(X) = \{d_1, d_2\}$ Case 2: d(0) = b, so, (i) $d(a) \le a * d(0) = a * b = b$

(i)
$$d(a) \le a * d(0) = a * b =$$

 $\Rightarrow d(a) \le b$
 $\Rightarrow d(a) = b$,
(ii) $d(b) \le b * b = 0$.

Then possible derivation is

$$f_{1}(0) = b, f_{1}(a) = b_{,1}(b) = 0,$$

$$D_{2}(X) = \{f_{1}\},$$

$$D(X) = D_{1}(X) \cup D_{2}(X) = \{d_{1}, d_{2}.f_{1}\},$$

$$\frac{\land | d_{1} | d_{2} | d_{1} | d_{1}$$

Proposition 3.10. Let X be a p-semisimple BCI-algebra and d_f, d'_f are f-derivations of X. Then $d_f(x) * f(x) = d'_f(x) * f(x)$ if $d_f(x), d'_f(x)$ lie in the same branch.

Proof. Let $x, y \in X$, then by (14), Definition 3.1 and Theorem 1.1, we have

(3.1)
$$(d_f * d'_f)(x * y) = d_f(x * y) \wedge d'_f(x * y) = d_f(x) * f(y) \wedge f(x) * d_f(y) = d_f(x) * f(y).$$

Now consider

$$(d_f * d'_f)(x * y) = d_f(x * y) \wedge d'_f(x * y)$$

$$= d'_f(x * y) \wedge d_f(x * y)$$

$$(3.2)$$

$$= d'_f(x) * f(y) \wedge f(x) * d'_f(y)$$

$$= d'_f(x) * f(y).$$

From (3.1) and (3.2), $d'_f(x) * f(y) = d_f(x) * f(y)$, hence for y = x, $d'_f(x) * f(x) = d_f(x) * f(x)$ $d_f(x) * f(x).$

This completes the proof.

References

- H. A. S. Abujabal and N. O. Al-shehri, Some results on derivations of BCI-algebras, Jr. of Natural sciences and Mathematics 46 (2006), no. 2, 13–19.
- [2] M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), no. 1, 39–45.
- [3] M. Aslam, *Ideal theory of BCK-algebras*, Quaid-I-Azam University Islamabad, Pakistan. Ph. D. Thesis, 1992.
- [4] M. Daoji, BCI-algebras and Abelian groups, Math. Japon. 32 (1987), no. 5, 693-696.
- [5] W. A. Dudek, On BCI- algebras with condition (s), Math. Japon. 31 (1986), no. 1, 26–29.
- [6] C. S. Hoo, BCI- algebras with condition (s), Math. Japon. 32 (1987), no. 5, 749–756.
- [7] K. Iseki, On BCI-algebras, Math. Sem. Notes 8 (1980), 125–130.
- [8] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176.
- [9] P. H. Lee and T. K. Lee, On derivations of prime rings, Chinese J. Math. 9 (1981), 107–110.
- [10] J. Meng, Y. B. Jun, and E. H. Roh, BCI-algebras of order 6, Math. Japon. 47 (1998), no. 1, 33–43.
- [11] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [12] L. Tiande and X. Changchang, p-Radical in BCI-algebras, Math. Japon. 30 (1985), no. 4, 511–517.
- [13] X. L. Xin, E. H. Roh, and J. C. Li, Some results on the BCI G part of algebras, Far East J. Math. Sci. SpecialVolume (Part III), (1997), 363–370.
- [14] J. E. Whitesitt, Boolean algebra and its Applications, New York, Dover, 1995.
- [15] J. M. Zhan and Y. L. Liu, On f derivation of BCI-algebras, Int. Jour. Math. Mathematical Sciences. 11 (2005), 1675–1684.
- [16] Q. Zhang, Some other characterizations of p semisimple BCI-algebras, Math. Japon. 36 (1991), no. 5, 815–817.

MALIK ANJUM JAVED DEPARTMENT OF MATHEMTICS GC UNIVERSITY LAHORE, PAKISTAN *E-mail address*: anjum2512@yahoo.com

MUHAMMAD ASLAM DEPARTMENT OF MATHEMTICS GC UNIVERSITY LAHORE, PAKISTAN *E-mail address*: Aslam298@hotmail.com