A NOTE ON f-DERIVATIONS OF BCI-ALGEBRAS

Malik Anjum Javed and Muhammad Aslam

Abstract

In this paper, we investigate some fundamental properties and establish some results of f-derivations of BCI-algebras. Also, we prove $\operatorname{Der}(X)$, the collection of all f-derivations, form a semigroup under certain binary operation.

1. Introduction and preliminaries

BCI-algebra has been developed from BCI-logic on the similar way as Boolean algebra was developed from Boolean logic which have a lot of application in computer sciences ([14]). Recently greater interest has been developed in the derivation of BCI-algebras, introduced by Y. B. Jun and X. L. Xin [8], which was motivated from a lot of work done on derivations of rings and Near rings (see $[9,11]$). The notion was further explored in the form of f-derivations of BCI-algebras by J. M. Zhan and Y. L. Liu [15]. In this paper, we prove some results on f-derivations of BCI-algebras. First, we show that an f-derivation of BCK-algebra is regular. However, we are able to show that under certain conditions namely, for $a \in X, f(a) * d_{f}(x)=0$ or $d_{f}(x) * f(a)=0$, for all $x \in X$ the f-derivation, d_{f}, of a BCI-algebra X is regular and X is a BCK-algebra. Also, we study derivations in a p-semisimple BCI-algebra and show that if d_{f}, d_{f}^{\prime} are f-derivations in X, then $d_{f} \circ d_{f}^{\prime}$ is also a f-derivation and $d_{f} \circ d_{f}^{\prime}=$ $d_{f}^{\prime} \circ d_{f}$. Consequently it is shown that $\left(f \circ d_{f}^{\prime}\right) \bullet\left(d_{f} \circ f\right)=\left(d_{f} \circ f\right) \bullet\left(f \circ d_{f}^{\prime}\right)$. Now, we include necessary preliminaries required for the sequel. $(X, *, 0)$ with a binary operation $*$ and distinguished element 0 is called a BCI-algebra, if it satisfies the following axioms for all $x, y, z \in X$.
(BCI-1) $((x * y) *(x * z)) \leq(z * y)$.
(BCI-2) $(x *(x * y)) \leq y$.
(BCI-3) $x \leq x$.
(BCI-4) $x \leq y$ and $y \leq x$ imply $x=y$,
where \leq is defined as $x \leq y$ if and only if $x * y=0$.
Also, (X, \leq) is a partially ordered set. A BCI-algebra X satisfying $0 \leq x$, for all $x \in X$, is called a BCK-algebra. If A is a branch of X, then X is said to

Received April 19, 2008; Revised October 30, 2008.
2000 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. f-derivation, p-semisimple, BCI-algebras.
be commutative on A if $x \wedge y=y \wedge x$ for all $x, y \in A$, where $x \wedge y=y *(y * x)$. In any BCI-algebra X, the following properties are valid (see $[1,7]$) for all $x, y, z \in X$:
(1) $x * 0=x$.
(2) $(x * y) * z=(x * z) * y$.
(3) $x \leq y$ implies that $x * z \leq y * z, z * y \leq z * x$.
(4) $(x * z) *(y * z) \leq x * y$.
(5) $x *(x *(x * y))=x * y$.
(6) $0 *(x * y)=(0 * x) *(0 * y)$.
(7) $x * 0=0$ implies $x=0$.

For a BCI-algebra X, we define $X_{+}=\{x \in X: 0 \leq X\}$, the BCK-part of $X, G(X)=\{x \in X: 0 * x=x\}$, the BCI-G part of X. If $X_{+}=\{0\}$, then X is called a p-semisimple BCI-algebra. If X is a p-semisimple BCI-algebra, then the following properties are valid for all $x, y, z \in X[3,4,5,11]$.
(8) $(x * z) *(y * z)=x * y$.
(9) $(0 *(0 * x))=x$ for all $x \in X$.
(10) $(x *(0 * y))=y *(0 * x)$.
(11) $x * y=0$ implies $x=y$.
(12) $x * a=x * b$ implies $a=b$.
(13) $a * x=b * x$ implies $a=b$.
(14) $a *(a * x)=x$.

Theorem 1.1 ([8, Theorem 3.4]). Let X be a BCI-algebra. X is commutative if and only if it is branch wise commutative.

On commutative BCI-algebras, we refer to $[2,7,9,12,13]$.
Definition 1.2 ([8]). Let X be a BCI-algebra and $f \in \operatorname{Hom}(X)$. By a $(l, r)-f-$ derivation of X, we mean a self map d_{f} of X satisfying the identity $d_{f}(x * y)=$ $d_{f}(x) * f(y) \wedge f(x) * d_{f}(y)$ for all $x, y \in X$.

If X satisfies the identity $d_{f}(x * y)=f(x) * d_{f}(y) \wedge d_{f}(x) * f(y)$ for all $x, y \in X$, then we say that d_{f} is a (r, l) - f-derivation of X. Moreover, if d_{f} is both a (l, r) and a (r, l) - f-derivation, we say that d_{f} is an f-derivation of X.
Definition 1.3 ([15]). A self map d_{f} of a BCI-algebra X is said to be regular if $d_{f}(0)=0$.

Proposition 1.4 ([15]). Let d_{f} be a regular derivation of a BCI-algebra X. Then the following hold.
(i) $d_{f}(x) \leq f(x) \forall x \in X$.
(ii) $d_{f}(x) * f(y) \leq f(x) * d_{f}(y) \forall x, y \in X$.
(iii) $d_{f}(x * y)=d_{f}(x) * f(y) \leq d_{f}(x) * d_{f}(y) \forall x, y \in X$.
(iv) $\operatorname{ker} d_{f}$ is a subalgebra of X. Especially, if f is monic, then $\operatorname{ker} d_{f} \subseteq X_{+}$.

2. Some results on derivations

First, we study f-derivations on BCK-algebras.

Proposition 2.1. Every (r, l) - f-derivation $((l, r)-f$-derivation) of a BCKalgebra is regular.
Proof. Let X be a BCK-algebra and d_{f} a (r, l) - f-derivation of X. Then for all $x \in X$, we have:

$$
\begin{aligned}
d_{f}(0) & =d_{f}(0 * x)=f(0) * d_{f}(x) \wedge d_{f}(0) * f(x) \\
& =0 * d_{f}(x) \wedge d_{f}(0) * f(x)=0 \wedge d_{f}(0) * f(x)=0
\end{aligned}
$$

Let d_{f} be a $(l, r)-f$-derivation of X. Then for all $x \in X$, we have:

$$
\begin{aligned}
d_{f}(0) & =d_{f}(0 * x)=d_{f}(0) * f(x) \wedge f(0) * d_{f}(x) \\
& =d_{f}(0) * f(x) \wedge 0 * d_{f}(x)=d_{f}(0) * f(x) \wedge 0=0
\end{aligned}
$$

Proposition 2.2. Let $f \in \operatorname{Epi}(X)$, d_{f} be a f-derivation of a BCI-algebra X and $a \in X$ such that $d_{f}(x) * a=0$ and $d_{f}(x) * f(a)=0$ for all $x \in X$. Then d_{f} is a regular f-derivation of X. Moreover, X is a BCK algebra.
Proof. Let d_{f} be a f-derivation of a BCI-algebra X and let $a \in X$ such that $d_{f}(x) * a=0$ and $d_{f}(x) * f(a)=0$ for all $x \in X$. Since d_{f} is (l, r) - f-derivation, we have:

$$
\begin{aligned}
0 & =d_{f}(x * a) * a=\left(d_{f}(x) * f(a) \wedge f(x) * d_{f}(a)\right) * a \\
& =\left(0 \wedge f(x) * d_{f}(a)\right) * a=0 * a
\end{aligned}
$$

this implies that $0 \leq a$, and therefore, $a \in X_{+}$. This shows that

$$
\begin{aligned}
d_{f}(0) & =d_{f}(0 * a)=d_{f}(0) * f(a) \wedge f(0) * d_{f}(a) \\
& =d_{f}(0) * f(a) \wedge 0 * d_{f}(a)=0 \wedge 0 * d_{f}(a)=0
\end{aligned}
$$

Hence d_{f} is a regular f-derivation of X. So by Proposition 1.4 [15], we have $d_{f}(x) \leq f(x)$ for all $x \in X$ and so

$$
0 * f(x) \leq 0 * d_{f}(x)=\left(d_{f}(x) * a\right) * d_{f}(x)=\left(d_{f}(x) * d_{f}(x)\right) * a=0 * a=0
$$

Thus $0 * f(x) \leq 0$ for all $x \in X$ and so $0=(0 * f(x)) * 0=0 * f(x)$. Then we have $0 \leq f(x)$ for all $x \in X$. Which implies that $f(X)$ is a BCK-algebra. As $f \in \operatorname{Epi}(X)$, therefore, $f(X)=X$.

Similarly, we can prove:
Proposition 2.3. Let d_{f} be a f-derivation of a BCI-algebra X and $a \in X$ such that $a * d_{f}(x)=0$ and $f(a) * d_{f}(x)=0$ for all $x \in X$. Then d_{f} is a regular f-derivation of X. Moreover, X is a BCK-algebra.
Example 2.4 ([3, page 8$]$). Let X be the set of natural number. For any element $x, y \in X$ define

$$
(x * y)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq y \\
x-y & \text { if } & x>y
\end{array}\right.
$$

then X is a BCI-algebra.

Define $f: X \rightarrow X$ by $f(x)=2 x$ then $f \in \operatorname{Epi}(X)$, indeed f is an BCIisomorphism. Consider $x, y \in X$. If $x \leq y$, then $f(x * y)=f(0)=2(0)=0$, $f(x) * f(y)=2 x * 2 y=0$. Hence $f(x * y)=f(x) * f(y)$. If $x>y$, then $f(x * y)=f(x-y)=2(x-y)=f(x) * f(y)$. This shows that $f(x * y)=f(x) * f(y)$ and hence $f \in \operatorname{Hom}(X)$. Obviously f is bijective, therefore $f \in \operatorname{Epi}(X)$.

Define $d_{f}(x)=0$ for all $x \in X$. Then

$$
\begin{aligned}
d_{f}(x * y) & =0 \\
d_{f}(x * y) & =d_{f}(x) * f(y) \wedge f(x) * d_{f}(y)=f(x) * d_{f}(y) \wedge d_{f}(x) * f(y) \\
& =0 * 2 y \wedge 2 x * 0 \\
& =0 \wedge 2 x=0
\end{aligned}
$$

This shows that d_{f} is (l, r)-derivation. Similarly we can show that d_{f} is (r, l) derivation.

Also note that $d_{f}(x) * a=0 * a=0$. This implies that $0 \leq a$ for all $a \in X$ and hence X is a BCK-algebra. And $d_{f}(x) * f(a)=0 * f(a)=0$, where $f \in \operatorname{Epi}(X)$. Moreover, observe that X is commutative BCK-algebra (see [3]).

Finally, we study f-derivations of a p-semisimple BCI-algebras, $\operatorname{Der}(X)$ denotes the set of all f-derivations of X.
Definition 2.5. Let X be a BCI-algebra and d_{f}, d_{f}^{\prime} be two self maps of X.
We define $d_{f} \circ d_{f}^{\prime}: X \rightarrow X$ as: $\left(d_{f} \circ d_{f}^{\prime}\right)(x)=d_{f}\left(d_{f}^{\prime}(x)\right)$ for all $x \in X$.
Proposition 2.6. Let X be a p-semisimple BCI-algebra, d_{f}^{\prime} and d_{f} are the $(l, r)-f$-derivations of X. Then $d_{f} \circ d_{f}^{\prime}$ is also $a(l, r)-f$-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and d_{f}^{\prime} and d_{f} are (l, r) - f-derivations of X. Then by (14) and Proposition 1.4(ii), we get for all $x, y \in X$:

$$
\begin{aligned}
\left(d_{f} \circ d_{f}^{\prime}\right)(x * y) & =d_{f}\left(d_{f}^{\prime}(x) * f(y) \wedge f(x) * d_{f}^{\prime}(y)\right)=d_{f}\left(d_{f}^{\prime}(x) * f(y)\right) \\
& =d_{f}\left(d_{f}^{\prime}(x)\right) * f(y) \wedge f\left(d_{f}^{\prime}(x)\right) * d_{f}(f(y))=d_{f}\left(d_{f}^{\prime}(x)\right) * f(y) \\
& \left.=\left(f(x) * d_{f}\left(d_{f}^{\prime}(y)\right)\right) *\left(f(x) * d_{f}\left(d_{f}^{\prime}(y)\right)\right) *\left(d_{f}\left(d_{f}^{\prime}(x)\right) * f(y)\right)\right) \\
& =\left(d_{f} \circ d_{f}^{\prime}\right)(x) * f(y) \wedge f(x) *\left(d_{f} \circ d_{f}^{\prime}\right)(y) .
\end{aligned}
$$

Which implies that $d_{f} \circ d_{f}^{\prime}$ is a (l, r) - f-derivation of X.
Similarly, we can prove:
Proposition 2.7. Let X be a p-semisimple BCI-algebra and d_{f}, d are (r, l)-f-derivations of X. Then $d_{f} \circ d_{f}^{\prime}$ is also $a(r, l)-f$-derivation of X.

Combining Propositions 2.6 and 2.7, we get:
Theorem 2.8. Let X be a p-semisimple BCI-algebra and d_{f}^{\prime} and d_{f} be f derivations of X. Then $d_{f} \circ d_{f}^{\prime}$ is also a f-derivation of X.

Proposition 2.9. Let X be a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} be f derivations of X such that $f \circ d_{f}=d_{f} \circ f, d_{f}^{\prime} \circ f=f \circ d_{f}^{\prime}$. Then $d_{f} \circ d_{f}^{\prime}=d_{f}^{\prime} \circ d_{f}$.
Proof. Let X be a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} the f-derivations of X. Since d_{f}^{\prime} is a $(l, r)-f$-derivation of X, then for all $x, y \in X$:

$$
\begin{aligned}
d_{f} \circ d_{f}^{\prime}(x * y) & =d_{f}\left(d_{f}^{\prime}(x * y)\right)=d_{f}\left(d_{f}^{\prime}(x) * f(y) \wedge f(x) * d_{f}^{\prime}(y)\right) \\
& =d_{f}\left(d_{f}^{\prime}(x) * f(y) .\right.
\end{aligned}
$$

But d_{f} is a (r, l) - f-derivation of X, so

$$
\begin{aligned}
\left(d_{f} \circ d_{f}^{\prime}\right)(x * y) & =d_{f}\left(d_{f}^{\prime}(x) * f(y)\right) \\
& =f\left(d_{f}^{\prime}(x)\right) * d_{f}(f(y)) \wedge d_{f}\left(d_{f}^{\prime}(x)\right) * f(y) \\
& =f\left(d_{f}^{\prime}(x)\right) * d_{f}(f(y)) \\
& =f \circ d_{f}^{\prime}(x) * d_{f} \circ f(y)
\end{aligned}
$$

thus we have for all $x, y \in X$:

$$
\begin{equation*}
\left(d_{f} \circ d_{f}^{\prime}\right)(x * y)=f \circ d_{f}^{\prime}(x) * d_{f} \circ f(y) \tag{2.1}
\end{equation*}
$$

Also, since d_{f} is a (r, l) - f-derivation of X, then for all $x, y \in X$:

$$
\begin{aligned}
\left(d_{f}^{\prime} \circ d_{f}\right)(x * y) & =d_{f}^{\prime}\left(f(x) * d_{f}(y) \wedge d_{f}(x) * f(y)\right) \\
& =d_{f}^{\prime}\left(f(x) * d_{f}(y)\right)
\end{aligned}
$$

But d_{f}^{\prime} is a (l, r) - f-derivation of X, so

$$
\begin{aligned}
\left(d_{f}^{\prime} \circ d_{f}\right)(x * y) & =d_{f}^{\prime}\left(f(x) * d_{f}(y)\right) \\
& =d_{f}^{\prime}(f(x)) * f\left(d_{f}(y)\right) \wedge f^{2}(x) * d_{f}^{\prime}\left(d_{f}(y)\right) \\
& =d_{f}^{\prime}(f(x)) * f\left(d_{f}(y)\right) \\
& =d_{f}^{\prime} \circ f(x) * f \circ d_{f}(y) \\
& =f \circ d_{f}^{\prime}(x) * d_{f} \circ f(y)
\end{aligned}
$$

Thus we have for all $x, y \in X$:

$$
\begin{equation*}
\left(d_{f}^{\prime} \circ d_{f}\right)(x * y)=f \circ d_{f}^{\prime}(x) * d_{f} \circ f(y) . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we get for all $x, y \in X$:

$$
\left(d_{f} \circ d_{f}^{\prime}\right)(x * y)=\left(d_{f}^{\prime} \circ d_{f}\right)(x * y)
$$

By putting $y=0$ we get for all $x \in X$:

$$
\left(d_{f} \circ d_{f}^{\prime}\right)(x)=\left(d_{f}^{\prime} \circ d_{f}\right)(x)
$$

Which implies that $d_{f} \circ d_{f}^{\prime}=d_{f}^{\prime} \circ d_{f}$.

Definition 2.10. Let X be a BCI-algebra and d_{f}, d_{f}^{\prime}, two self maps of X. We define $d_{f} \bullet d_{f}^{\prime}: X \rightarrow X$ as:

$$
\left(d_{f} \bullet d_{f}^{\prime}\right)(x)=d_{f}(x) \bullet d_{f}^{\prime}(x) \text { for all } x \in X
$$

Proposition 2.11. Let X be a p-semisimple BCI-algebra, $f \in \operatorname{Epi}(X)$ and d_{f}, d_{f}^{\prime} are f-derivations of X. Then $\left(f \circ d_{f}^{\prime}\right) \bullet\left(d_{f} \circ f\right)=\left(d_{f} \circ f\right) \bullet\left(f \circ d_{f}^{\prime}\right)$.

Proof. Let X is a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} be f-derivations of X. Since d_{f}^{\prime} is a $(l, r)-f$-derivation of X, then for all $x, y \in X$:

$$
\left(d_{f} \circ d_{f}^{\prime}\right)(x \bullet y)=d_{f}\left(d_{f}^{\prime}(x) \bullet f(y) \wedge f(x) \bullet d_{f}^{\prime}(y)=d_{f}\left(d_{f}^{\prime}(x) \bullet f(y)\right)\right.
$$

But d_{f} is a (r, l) - f-derivation of X, so

$$
\begin{aligned}
d_{f}\left(d_{f}^{\prime}(x) \bullet f(y)\right) & =f\left(d_{f}^{\prime}(x)\right) \bullet d_{f}(f(y)) \wedge d_{f}\left(d_{f}^{\prime}(x)\right) \bullet f(y) \\
& =f\left(d_{f}^{\prime}(x)\right) \bullet d_{f}(f(y)) \\
& \left.\left.=f \circ d_{f}^{\prime}(x)\right) \bullet d_{f} \circ f(y)\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left.\left.\left(d_{f} \circ d_{f}^{\prime}\right)(x \bullet y)=f \circ d_{f}^{\prime}(x)\right) \bullet d_{f} \circ f(y)\right) \text { for all } x, y \in X \tag{2.3}
\end{equation*}
$$

Also, we have that d_{f}^{\prime} is a (r, l) - f-derivation of X, then for all $x, y \in X$:

$$
\left(d_{f} \circ d_{f}^{\prime}\right)(x \bullet y)=d_{f}\left(f(x) \bullet d_{f}^{\prime}(y) \wedge d_{f}^{\prime}(x) \bullet f(y)\right)=d_{f}\left(f(x) \bullet d_{f}^{\prime}(y)\right)
$$

But d_{f} is a $(l, r)-f$-derivation of X, so

$$
\begin{aligned}
d_{f}\left(f(x) \bullet d_{f}^{\prime}(y)\right) & =d_{f}(f(x)) \bullet f\left(d_{f}^{\prime}(y)\right) \wedge f^{2}(x) \bullet d_{f}\left(d_{f}^{\prime}(y)\right) \\
& =d_{f}(f(x)) \bullet f\left(d_{f}^{\prime}(y)\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left.\left.\left(d_{f} \circ d_{f}^{\prime}\right)(x \bullet y)=d_{f} \circ f(x)\right) \bullet f \circ d_{f}^{\prime}(y)\right) \text { for all } x, y \in X \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we get:

$$
f \circ d_{f}^{\prime}(x) \bullet d_{f} \circ f(y)=d_{f} \circ f(x) \bullet f \circ d_{f}^{\prime}(y) \text { for all } x, y \in X \text {. }
$$

By putting $x=y$ we get for all $x \in X$:

$$
\begin{aligned}
f \circ d_{f}^{\prime}(x) \bullet d_{f} \circ f(x) & =d_{f} \circ f(x) \bullet f \circ d_{f}^{\prime}(x), \\
\left(f \circ d_{f}^{\prime} \bullet d_{f} \circ f\right)(x) & =\left(d_{f} \circ f \bullet f \circ d_{f}^{\prime}\right)(x) .
\end{aligned}
$$

Which implies that $\left(f \circ d_{f}^{\prime}\right) \bullet\left(d_{f} \circ f\right)=\left(d_{f} \circ f\right) \bullet\left(f \circ d_{f}^{\prime}\right)$.

3. $\operatorname{Der}(X)$, set of all f-Derivations

$\operatorname{Der}(X)$ denotes the set of all f-derivations on X.
Definition 3.1. Let $d_{f}, d_{f}^{\prime} \in \operatorname{Der}(X)$. Define the binary operation \wedge as:

$$
\left(d_{f} \wedge d_{f}^{\prime}\right)(x)=d_{f}(x) \wedge d_{f}^{\prime}(x)
$$

Proposition 3.2. Let X be a p-semisimple BCI algebra and d_{f}, d_{f}^{\prime} are (l, r) -f-derivations of X. Then $d_{f} \wedge d_{f}^{\prime}$ is also a (l, r) - f-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} are (l, r) - f-derivations of X. Then by (14) and Proposition 1.4, we have

$$
\begin{aligned}
& \left(d_{f} \wedge d_{f}^{\prime}\right)(x * y) \\
= & d_{f}(x * y) \wedge d_{f}^{\prime}(x * y) \\
= & \left\{\left(\left(d_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right)\right\} \wedge\left\{\left(d_{f}^{\prime}(x) * f(y)\right) \wedge\left(f(x) * d_{f}^{\prime}(y)\right)\right\}\right. \\
& \left(d_{f} \wedge d_{f}^{\prime}\right)(x * y) \\
= & \left(d_{f}(x) * f(y)\right) \wedge\left(d_{f}^{\prime}(x) * f(y)\right) \\
= & d_{f}(x) * f(y) \\
= & \left(d_{f}^{\prime}(x) *\left(d_{f}^{\prime}(x) * d_{f}(x)\right)\right) * f(y) \\
= & \left(d_{f}(x) \wedge d_{f}^{\prime}(x)\right) * f(y) \\
= & \left(d_{f} \wedge d_{f}^{\prime}\right)(x) * f(y) \\
= & \left(f(x) *\left(d_{f} \wedge d_{f}^{\prime}\right)(y)\right) *\left\{\left(f(x) *\left(d_{f} \wedge d_{f}^{\prime}\right)(y)\right) *\left(\left(d_{f} \wedge d_{f}^{\prime}\right)(x)\right) * f(y)\right\} \\
= & \left(\left(d_{f} \wedge d_{f}^{\prime}\right)(x) * f(y)\right) \wedge\left(f(x) *\left(d_{f} \wedge d_{f}^{\prime}\right)(y)\right)=\left(d_{f} \wedge d_{f}^{\prime}\right)(x * y)
\end{aligned}
$$

This shows that $\left(d_{f} \wedge d_{f}^{\prime}\right)$ is a (l, r) - f-derivation of X. This completes the proof.

In the similar fashion, we can establish the following.
Proposition 3.3. Let X be a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} are (r, l) -f-derivations of X. Then $d_{f} \wedge d_{f}^{\prime}$ is also $a(r, l)$ - f-derivation of X.

By using the Propositions 3.2, 3.3, we conclude the following.
Proposition 3.4. If $d_{f}, d_{f}^{\prime} \in \operatorname{Der}(X)$, then $d_{f} \wedge d_{f}^{\prime} \in \operatorname{Der}(X)$. Also, $\left(d_{f} \wedge\right.$ $\left.\left(d_{f}^{\prime} \wedge d_{f}^{\prime \prime}\right)\right)(x * y)=\left(\left(d_{f} \wedge d_{f}^{\prime}\right) \wedge d_{f}^{\prime \prime}\right)(x * y)$.

Let $d_{f}, d_{f}^{\prime}, d_{f}^{\prime \prime} \in \operatorname{Der}(X)$. Then by definition,

$$
\begin{aligned}
& \left(\left(d_{f} \wedge d_{f}^{\prime}\right) \wedge d_{f}^{\prime \prime}\right)(x * y) \\
= & \left(d_{f} \wedge d_{f}^{\prime}\right)(x * y) \wedge d_{f}^{\prime \prime}(x * y)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(d_{f}^{\prime \prime}(x * y)\right) *\left(d_{f}^{\prime \prime}(x * y) *\left(d_{f} \wedge d_{f}^{\prime}\right)(x * y)\right) \\
& =\left(d_{f} \wedge d_{f}^{\prime}\right)(x * y) \\
& =d_{f}(x * y) \wedge d_{f}^{\prime}(x * y) \\
& =\left(d_{f}(x) * f(y) \wedge f(x) * d_{f}(y)\right) \wedge\left(d_{f}^{\prime}(x) * f(y) \wedge f(x) * d_{f}^{\prime}(y)\right) \\
& =d_{f}(x) * f(y) \wedge d_{f}^{\prime}(x) * f(y) \\
& =d_{f}(x) * f(y)
\end{aligned}
$$

Also consider the following,

$$
\begin{aligned}
& \left(d_{f} \wedge\left(d_{f}^{\prime} \wedge d_{f}^{\prime \prime}\right)\right)(x * y) \\
= & d_{f}(x * y) \wedge\left(d_{f}^{\prime} \wedge d_{f}^{\prime \prime}\right)(x * y) \\
= & d_{f}(x * y) \wedge\left(\left(d_{f}^{\prime}(x * y) \wedge d_{f}^{\prime \prime}(x * y)\right)\right. \\
= & d_{f}(x * y) \wedge d_{f}^{\prime}(x * y) \\
= & \left(d_{f}(x) * f(y) \wedge f(x) * d_{f}(y)\right) \wedge\left(d_{f}^{\prime}(x) * f(y) \wedge f(x) * d_{f}^{\prime}(y)\right) \\
= & d_{f}(x) * f(y) \wedge d_{f}^{\prime}(x) * f(y) \\
= & d_{f}(x) * f(y)
\end{aligned}
$$

This shows that $\left(d_{f} \wedge d_{f}^{\prime}\right) \wedge d_{f}^{\prime \prime}=d_{f} \wedge\left(d_{f}^{\prime} \wedge d_{f}^{\prime \prime}\right)$. Thus $\operatorname{Der}(X)$ forms a semigroup.
Corollary 3.5. If X is a p-semisimple BCI-algebra, then $(\operatorname{Der}(X), \wedge)$ is a semigroup.

Let we take f as an identity map, i.e., $d_{f}=d_{I}=d$ in the following examples.
Example 3.6. If $X=\{0, a, b\}$ and binary operation $*$ is defined as

$*$	0	a	b
0	0	b	a
a	a	0	b
b	b	a	0

then it forms a p-semisimple BCI-algebra (see [3]). Moreover if I is an identity mapping, $I \in \operatorname{Epi}(X)$, then $\operatorname{Der}(X)$ associated to I is only $\{I\}$, which is indeed a semigroup in view of Definition 3.1.

However, we can also observe from the following example that if X is not a p-semisimple BCI-algebra, then $\operatorname{Der}(X)$ may also form a semigroup.

Example 3.7. Let $X=\{0, a, b\}$ be a commutative BCK-algebra with binary operation $*$ as defined in the following table:

$*$	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Let $\operatorname{Der}(X)$ set of all derivations of X. If $d \in \operatorname{Der}(X)$, then $d(0)=0$ since X is a BCK-algebra.

Now 0 can be associated under d in one way. Now $d(0)=0$ and X is a commutative BCK-algebras therefore $d(x * y)=d(x) * y$ and $d(x) \leq x$. This shows that a and b can be associated under d in 2 ways each and hence $|\operatorname{Der}(X)| \leq 1 \times 2 \times 2=4$, which are the following:

$$
\begin{aligned}
& d_{1}(x)=0 \text { for all } x \in X, d_{1} \in \operatorname{Der}(X) . \\
& d_{2}(0)=0, d_{2}(a)=0, d_{2}(b)=b, \\
& d_{3}(0)=0, d_{3}(a)=a, d_{3}(b)=0, \\
& d_{4}(0)=0, d_{4}(a)=a, d_{4}(b)=b, \\
& \operatorname{Der}(X)=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\} .
\end{aligned}
$$

Since X is a commutative BCK-algebra therefore $\operatorname{Der}(X)=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$ form a commutative semigroup as shown in the following table:

\wedge	d_{1}	d_{2}	d_{3}	d_{4}
d_{1}	d_{1}	d_{1}	d_{1}	d_{1}
d_{2}	d_{1}	d_{2}	d_{1}	d_{2}
d_{3}	d_{1}	d_{1}	d_{3}	d_{3}
d_{4}	d_{1}	d_{2}	d_{3}	d_{4}

Remark 3.8. If X is a commutative BCI-algebra, then from the Definition 1.2 if f is considered as identity map, then it follows that

$$
d(x) \leq x * d(0)
$$

This shows that $d(x), x * d(0)$ always lies in the same branch. If $d(0)=0$, then $d(x) \leq x$. This shows that $d(x)$ and x lies in the same branch. We will use these observation in the following example.

The following example reflect that if X is a commutative BCI-algebra which is not a p-semisimple BCI-algebra, then under the binary operation defined in Definition 3.1, $\operatorname{Der}(X)$ does not form a semigroup. However, it is a groupoid.

Example 3.9. If $X=\{0, a, b\}$ and binary operation $*$ is defined as

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

$d(0)=0$ and $d(0)=b$, then in the light of above said remarks
Case 1: $d(0)=0$, then $d(x) \leq x * d(0)$ implies that $d(x) \leq x$, so
(i) $d(a) \leq a \Rightarrow$ Either $d(a)=0$ or $d(0)=a$,
(ii) $d(b) \leq b * 0=b$.

Then possible derivations are

$$
\begin{aligned}
d_{1}(0) & =0, d_{1}(a)=0, d_{1}(b)=b, \\
d_{2}(0) & =0, d_{2}(a)=a, d_{2}(b)=b, \\
D_{1}(X) & =\left\{d_{1}, d_{2}\right\} .
\end{aligned}
$$

Case 2: $d(0)=b$, so,
(i) $d(a) \leq a * d(0)=a * b=b$

$$
\begin{aligned}
& \Rightarrow d(a) \leq b \\
& \Rightarrow d(a)=b,
\end{aligned}
$$

(ii) $d(b) \leq b * b=0$.

Then possible derivation is

$$
\begin{aligned}
& f_{1}(0)=b, f_{1}(a)=b, 1(b)=0, \\
& D_{2}(X)=\left\{f_{1}\right\} \text {, } \\
& D(X)=D_{1}(X) \cup D_{2}(X)=\left\{d_{1}, d_{2} . f_{1}\right\},
\end{aligned}
$$

Proposition 3.10. Let X be a p-semisimple BCI-algebra and d_{f}, d_{f}^{\prime} are f derivations of X. Then $d_{f}(x) * f(x)=d_{f}^{\prime}(x) * f(x)$ if $d_{f}(x), d_{f}^{\prime}(x)$ lie in the same branch.

Proof. Let $x, y \in X$, then by (14), Definition 3.1 and Theorem 1.1, we have

$$
\begin{align*}
\left(d_{f} * d_{f}^{\prime}\right)(x * y) & =d_{f}(x * y) \wedge d_{f}^{\prime}(x * y) \\
& =d_{f}(x) * f(y) \wedge f(x) * d_{f}(y) \tag{3.1}\\
& =d_{f}(x) * f(y)
\end{align*}
$$

Now consider

$$
\begin{align*}
\left(d_{f} * d_{f}^{\prime}\right)(x * y) & =d_{f}(x * y) \wedge d_{f}^{\prime}(x * y) \\
& =d_{f}^{\prime}(x * y) \wedge d_{f}(x * y) \\
& =d_{f}^{\prime}(x * y) \tag{3.2}\\
& =d_{f}^{\prime}(x) * f(y) \wedge f(x) * d_{f}^{\prime}(y) \\
& =d_{f}^{\prime}(x) * f(y) .
\end{align*}
$$

From (3.1) and (3.2), $d_{f}^{\prime}(x) * f(y)=d_{f}(x) * f(y)$, hence for $y=x, d_{f}^{\prime}(x) * f(x)=$ $d_{f}(x) * f(x)$.

This completes the proof.

References

[1] H. A. S. Abujabal and N. O. Al-shehri, Some results on derivations of BCI-algebras, Jr. of Natural sciences and Mathematics 46 (2006), no. 2, 13-19.
[2] M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), no. 1, 39-45.
[3] M. Aslam, Ideal theory of BCK-algebras, Quaid-I-Azam University Islamabad, Pakistan. Ph. D. Thesis, 1992.
[4] M. Daoji, BCI-algebras and Abelian groups, Math. Japon. 32 (1987), no. 5, 693-696.
[5] W. A . Dudek, On BCI- algebras with condition (s), Math. Japon. 31 (1986), no. 1, 26-29.
[6] C. S. Hoo, BCI- algebras with condition (s), Math. Japon. 32 (1987), no. 5, 749-756.
[7] K. Iseki, On BCI-algebras, Math. Sem. Notes 8 (1980), 125-130.
[8] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
[9] P. H. Lee and T. K. Lee, On derivations of prime rings, Chinese J. Math. 9 (1981), 107-110.
[10] J. Meng, Y. B. Jun, and E. H. Roh, BCI-algebras of order 6, Math. Japon. 47 (1998), no. 1, 33-43.
[11] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[12] L. Tiande and X. Changchang, p-Radical in BCI-algebras, Math. Japon. 30 (1985), no. 4, 511-517.
[13] X . L. Xin, E. H. Roh, and J. C. Li, Some results on the BCI G part of algebras, Far East J. Math. Sci. SpecialVolume (Part III), (1997), 363-370.
[14] J. E. Whitesitt, Boolean algebra and its Applications, New York, Dover, 1995.
[15] J. M. Zhan and Y. L. Liu, On f derivation of BCI-algebras, Int. Jour. Math. Mathematical Sciences. 11 (2005), 1675-1684.
[16] Q. Zhang, Some other characterizations of p semisimple BCI-algebras, Math . Japon. 36 (1991), no. 5, 815-817.

Malik Anjum Javed
Department of Mathemtics
GC University
Lahore, Pakistan
E-mail address: anjum2512@yahoo.com
Muhammad Aslam
Department of Mathemtics
GC University
Lahore, Pakistan
E-mail address: Aslam298@hotmail.com

