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NON-INTERACTIVE IDENTITY-BASED DNF SIGNATURE
SCHEME AND ITS EXTENSIONS

Kwangsu Lee, Jung Yeon Hwang, and Dong Hoon Lee

Abstract. An ID-based DNF signature scheme is an ID-based signa-
ture scheme with an access structure which is expressed as a disjunctive
normal form (DNF) with literals of signer identities. ID-based DNF sig-
nature schemes are useful to achieve not only signer-privacy but also a
multi-user access control. In this paper, we formally define a notion of
a (non-interactive) ID-based DNF signature and propose the first non-
interactive ID-based DNF signature schemes that are secure under the
computational Diffie-Hellman and subgroup decision assumptions. Our
first scheme uses random oracles, and our second one is designed without
random oracles. To construct the second one, we use a novel technique
that converts a non-interactive witness indistinguishable proof system of
encryption of one bit into a corresponding proof system of encryption
of a bit-string. This technique may be of independent interest. The sec-
ond scheme straightforwardly yields the first ID-based ring signature that
achieves anonymity against full key exposure without random oracles. We
finally present two extensions of the proposed ID-based DNF signature
schemes to support multiple KGCs and different messages.

1. Introduction

The notion of a digital signature is one of the most fundamental and use-
ful inventions of modern cryptography. Since the first public key cryptosys-
tem in [10] was introduced, various signature schemes have been suggested to
meet various needs in practical circumstances. In particular, combining an
access structure with a signature scheme enables users to achieve important
cryptographic goals such as user anonymity and multi-user access control, etc.
Traditionally, in large-scale computer systems, the security for the important
resources is achieved by access controls that describe which user or component
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of a system is allowed to access what resources. One way to describe the access
control is to use an access structure which is defined as a collection of subject
sets that can access to the object. In signature systems, a signature may be
viewed as a resource and a signer who generates the signature as a subject.
That is, the access structure can be used to describe a collection of signer sets
who participate in generating a signature. For examples, a public-key signature
system implicitly includes an access structure that describes only one signer.
A multi-signature system implicitly includes an access structure that describes
multiple signers who participate in generating a signature. A ring signature
system implicitly includes access structure such that any signer in members of
a signer set generates a signature.

By applying ID-based cryptography to a signature scheme, we can construct
an ID-based signature scheme in which user identity is used as a user public
key [23, 15, 8, 2]. Particularly, an ID-based signature scheme is more suitable
for dealing with a complex access structure to represent an authorized set of
signers, because it does not require additional information like certificates to
verify a signature. In this paper, as a cryptographic primitive for more general-
ized access structure, we study an ID-based DNF signature scheme, that is an
ID-based signature scheme associated with an access structure expressed as a
disjunctive normal form (DNF) with “OR” and “AND” operators and an iden-
tity ID as a literal. An ID-based DNF signature is valid only if the evaluation
of the corresponding DNF is true. A literal ID is evaluated to be true when a
signature generated by a signer with ID is valid and false when the signature
is invalid or no signature is provided. While several ID-based DNF signature
schemes have been proposed [14, 9], previously known schemes require inter-
active co-operation among signers in the access structure. That is, each signer
broadcasts his random commitment and generates his own individual signature
using others’ random commitments. Individual signatures are then sent to a
representor of signers who generates a final signature by combining the access
structure. Since many parties participate in signing process, this interactive
communication requires costly communication complexity with respect to sys-
tem efficiency. Hence, it is highly desirable for an ID-based DNF signature
scheme to be non-interactive.

Applications. An ID-based DNF signature scheme is a generalization of an
ID-based multi-party signature scheme such as ID-based ring signature, multi-
signature, designated-verifier signature, and threshold signature schemes. Thus
an ID-based DNF signature scheme can be applied to various applications where
an ID-based multi-party signature scheme is applied. Additionally, we can also
apply it to other applications to which previous ID-based multi-party signature
schemes are not suited because of inefficiency or inadequacy. For example, we
may consider the situation that at least two valid signatures are necessary
to guarantee the validity of a message without revealing the identities of the
signers. A naive approach might be to use a ring signature scheme twice and
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generate two ring signatures, one for each signer. In case of using an ID-based
DNF signature, two identities can be simply paired by “AND” operator in the
access structure. Hence, to verify the validity of a message, we need only one
signature, which in turns reduces the verification time of the signature.

Our Results. In this paper, we first give a formal definition of a non-
interactive ID-based DNF signature scheme. To capture the non-interactive
property, we allow individual signature queries to the adversary. Our unforge-
ability model captures the attacker of insider corruption and anonymity model
captures the attacker of full key exposure. To construct ID-based DNF signa-
ture schemes, we extend Groth, Ostrovsky, and Sahai’s non-interactive witness
indistinguishable (NIWI) proof system [13] of encryption of 0 or 1 bit to encryp-
tion of two bit-strings. This extended GOS NIWI proof may be of independent
interest. We use this extended one to facilitate all-or-nothing encryption of
signer identities in our ID-based DNF signature without random oracles. Next
we propose two non-interactive ID-based DNF signature schemes. Our first
construction is efficient and the size of a signature is compact. The security
of the construction is proven under the computational Diffie-Hellman (CDH)
and the subgroup decision (SD) assumptions in the random oracle model. Our
second construction is proven secure under the same assumptions without ran-
dom oracles, while it is relatively inefficient and the size of a signature is not
compact, compared to the first one. We note that the second construction
directly yields the first ID-based ring signature to achieve signer anonymity
against full key exposure without random oracles, because an ID-based ring
signature scheme is a special case of an ID-based DNF signature scheme. Fi-
nally, we extend our ID-based DNF signature scheme with random oracles to
support multiple key generation centers or different messages. Our first ex-
tension for multiple KGCs enables signers from different KGCs to generate
a signature. Our second extension allows that each signer can independently
generates individual signature of his own message.

Related Works. Bresson et al. [7] proposed the first signature scheme with
an access structure by extending Rivest et al.’s ring signature scheme [19]. They
called their scheme as ad-hoc group signature. Recently, Boyen [6] proposed
Mesh signature that allows each signer to generate a signature for different
messages by extending the access structure. To overcome the certificate man-
agement problem in public key signatures, ID-based signature was proposed
[23, 25, 8, 14, 9, 17]. The certificate management is a critical burden in sig-
nature schemes with an access structure, because the access structure contains
many certificates to be verified. Thus an ID-based signature scheme with an
access structure may be one of prominent solutions to resolve this problem.
Herranz and Sáez [14] constructed the first ID-based signature with an access
structure by extending their ID-based ring signature. Chow et al. [9] proposed
another ID-based signature with an access structure by extending their ID-
based ring signature that is based on Cha-Cheon ID-based signature scheme
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[8]. However previous two schemes require interactive communication between
signers and are secure in the random oracle model. As noted above, interaction
between signers greatly deteriorates the efficiency of system.

Another line of research that uses access structures is attribute-based en-
cryption (ABE) schemes [20, 12, 4, 18]. In attribute-based encryption schemes,
the ciphertext is represented with multiple attributes and the user’s private key
is associated with an access structure that specifies what kinds of attributes
are accepted as valid one. If attributes in the ciphertext satisfies the access
structure in the user’s private key, then the user can decrypt the ciphertext;
otherwise, the user can’t decrypt the ciphertext. The attribute-based encryp-
tion schemes are easily integrated with the role-based access control (RBAC)
system [21], because roles in the RBAC are used for attributes in the ABE.
The main difference between attribute-based systems and ID-based DNF sys-
tems is that in attribute-based systems, a user has a private key for multiple
attributes, while in ID-based DNF systems, a user has a private key for a single
attribute. So the non-interactiveness is not needed in attribute-based systems,
but the collusion resistance that prevents the construction of new private key
from different user’s private keys is essential in attribute-based systems.

2. Backgrounds

We review the access structure, the disjunctive normal form, the bilinear
groups and the complexity assumptions that our schemes are based on.

2.1. Access structure

Let {P1, P2, . . . , Pn} be a set of parties. A collection A ⊆ 2{P1,P2,...,Pn}

is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access
structure (respectively, monotone access structure) is a collection (respectively,
monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆
2{P1,P2,...,Pn}\{∅} [1]. The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

For ID-based systems, the parties are replaced as a set of identities, Thus
the access structure A contains the authorized set of identities.

2.2. Disjunctive normal form

A logical formula ψ is in disjunctive normal form (DNF) if and only if it is
a disjunction (∨) of one or more conjunctions (∧) of one or more literals where
literal is an atomic formula (atom) or its negation. We define a DNF formula
ψ as a logical formula ψ in disjunctive normal form with restriction that literal
is an identity. That is, ψ = ∨a

i=1 ∧bi
j=1 IDi,j , where IDi,j is an identity. We say

that a set S of identities satisfies a DNF formula ψ if and only if there exists a
set S′ ⊆ S such that ψ(S′) = 1.

Note that an access structure A can be represented as a DNF formula ψ.
That is, the conjunction and the disjunction of the DNF formula ψ are used
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to represent the subset of parties and the collection of subsets in the access
structure A respectively.

2.3. Bilinear groups of composite order

Let n = pq, where p and q are prime numbers. Let G and GT be two
multicative cyclic groups of the same composite order n and g a generator of
G. The bilinear map e : G×G→ GT has the following properties:

(1) Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zn, we have e(ua, vb) = e(u, v)ab

where the product in the exponent is a defined modulo n.
(2) Non-degeneracy: e(g, g) 6= 1 and is a generator of GT with order n.

We say that G is a bilinear group if the group operations in G and GT as well as
the bilinear map e are all efficiently computable. Note that e(·, ·) is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.4. Complexity assumptions

We define two complexity assumptions: the Computational Diffie-Hellman
and the Subgroup Decision assumptions.

Computational Diffie-Hellman (CDH) Assumption. Let G be a bilinear
group of composite order n = pq. Let Gp be a subgroup of order p of G with
a generator gp ∈ Gp. The CDH assumption in Gp with the composite order
setting is that there is no probabilistic polynomial-time (PPT) algorithm A
that, given a tuple (gp, g

a
p , g

b
p) with the description of bilinear group G and

its factorization (p, q) of order n, computes gab
p with non-negligible advantage.

The advantage of A is defined as follows:

AdvCDH
A,G,Gp

= Pr
[A((n, p, q,G,GT , e), gp, g

a
p , g

b
p) = gab

p

]
,

where the probability is taken over the random choice of the generator gp ∈ Gp

and a, b ∈ Zp, and the random bits consumed by A.

Subgroup Decision (SD) Assumption. Let G be a bilinear group of com-
posite order n = pq. Let Gq be a subgroup of order q of G. The Subgroup
Decision (SD) assumption is that there is no PPT algorithm A that, given the
description of G and h selected at random either from G or from Gq, decides
whether h ∈ Gq or not with non-negligible advantage. The advantage of A is
defined as follows:

AdvSD
A,G,Gq

=
∣∣∣ Pr

[
h ∈R G : A((n,G,GT , e), h) = 1

]−

Pr
[
h ∈R Gq : A((n,G,GT , e), h) = 1

] ∣∣∣,

where the probability is taken over the random choice of h and the random bits
consumed by A.
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3. Definitions

Informally, an ID-based DNF signature scheme is an identity-based signa-
ture scheme expressing that the signature was generated by a signer set that
satisfies a DNF formula, but it does not leak any information about the signer
set. An ID-based DNF signature scheme should satisfy two security proper-
ties, namely, unforgeability and anonymity. Unforgeability is satisfied if an
adversary cannot construct a valid signature on a DNF formula when he does
not know private keys that satisfy the DNF formula. Anonymity is satisfied if
an adversary cannot distinguish which signer set generated the signature. For
security model, we adopt the strong definitions of ring signatures, namely, un-
forgeability against insider corruption and anonymity against full key exposure
in [3].

3.1. Definition of scheme

An ID-based DNF signature (IBDNFS) scheme consists of five algorithms
(Setup, KeyGen, Sign, Merge, Verify). Formally it is defined as:

• Setup(1λ). The setup algorithm takes as input a security parameter,
outputs a public parameters PP and a master secret key MK.

• KeyGen(ID,MK, PP). The key generation algorithm takes as input an
identity ID, the master secret key MK and the public parameters PP,
outputs a private key SKID.

• Sign(M,ψ, SKID,PP). The individual signing algorithm takes as input
a message M , a DNF formula ψ, a private key SKID and the public
parameters PP, then outputs an individual signature θ for M and ψ.

• Merge(M,ψ,SS,PP). The merge algorithm takes as input a message
M , a DNF formula ψ = ∨a

i=1 ∧bi
j=1 IDi,j , an individual signature set

SS = {(IDi∗,j , θi∗,j) | i∗ ∈ {1, . . . , a}}1≤j≤bi∗ and the public parameters
PP, then outputs an ID-based DNF signature σ.

• Verify(σ,M,ψ,PP). The verification algorithm takes as input a signa-
ture σ, a message M , a DNF formula ψ and the public parameters
PP, then outputs “accept” or “reject”, depends on the validity of the
signature.

For non-interactive ID-based DNF signature schemes, we separated the sig-
nature generation algorithm as sign and merge algorithms. Thus each user
individually generates its own signature (without interactions), then someone
merges the whole individual signatures as an ID-based DNF signature. For
interactive ID-based DNF signature schemes, it is possible to combine sign and
merge algorithms.

If a DNF formula is represented as ψ = ∨1
i=1 ∧bi

j=1 IDi,j , then the ID-based
DNF signature of ψ equals with the ID-based multi-signature. If ψ = ∨a

i=1∧1
j=1

IDi,j , then the ID-based DNF signature of ψ equals with the ID-based ring
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signature. In case of the ID-based threshold signature, the t-out-of-n threshold
can be restated as a DNF formula ψ.

3.2. Definition of security

Unforgeability against insider corruption is defined via the following game
between a challenger C and an adversary A:

Setup: C runs the setup algorithm and keeps the master secret key MK to
itself, then it gives the public parameters PP to A.

Queries: Adaptively, A can request any queries described below.
• Private key query: A requests a private key on an identity ID.
• Individual signature query: A requests an individual signature for a

message M , a DNF formula ψ and an identity ID.
• Signature query: A requests a signature for a message M and a DNF

formula ψ.
C accepts or responds to each request before accepting the next one. A makes
qE private key queries, qS signature queries (including individual signature
queries).

Output: Finally, A outputs a pair (σ∗,M∗, ψ∗) and wins the game if (1)
the corrupted identities set C = {IDi}1≤i≤qE by private key queries does not
satisfy the DNF formula ψ∗; (2) let S be the set of identities that was requested
an individual signatures queries for (M∗, ψ∗), then S ∪ C does not satisfy the
DNF formula ψ∗; (3) A did not request a signature for a pair (M∗, ψ∗); (4)
Verify(σ∗,M∗, ψ∗,PP) = “accept”.

Let Succ be the event that A wins the above game. The advantage of A is
defined as AdvIBDNFS-UF

A = Pr[Succ] where the probability is taken over the coin
tosses made by A and C.
Definition 1. An adversary A is said to (t, ε, qE , qS)-break an ID-based DNF
signature scheme if A runs in time at most t, A makes at most qE private key
queries and at most qS signing oracle queries, and AdvIBDNFS-UF

A is at least ε.
An ID-based DNF signature scheme is (t, ε, qE , qS)-unforgeable if there exists
no adversary that (t, ε, qE , qS)-breaks it.

Anonymity against full key exposure is defined via the following game be-
tween a challenger C and an adversary A.

Setup: C runs the setup algorithm and keeps the master secret key MK to
itself, then it gives the public parameters PP to A.

Queries: Adaptively, A can request any queries described below.
• Private key query: A requests a private key on an identity ID.
• Individual signature query: A requests an individual signature for a

message M , a DNF formula ψ and an identity ID.
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• Signature query: A requests a signature for a message M and a DNF
formula ψ.

C accepts or responds to each request before accepting the next one. A makes
qE private key queries, qS signature queries (including individual signature
queries).

Challenge: A submits a challenge tuple (M,ψ, i0, i1) where ψ = ∨a
i=1 ∧bi

j=1

IDi,j and 1 ≤ i0 6= i1 ≤ a. C chooses a random coin c ∈ {0, 1} and computes
σ = Merge(M,ψ,SSc,PP) where SSc = {(IDic,j , θic,j)}1≤j≤bic

such that θic,j is
an individual signature for (M,ψ) by the private key of IDic,j . Then C gives σ
to A.

Output: Finally, A outputs a guess c′ of c and wins the game if c′ = c.

Let Succ be the event that A wins the above game. The advantage of A is
defined as AdvIBDNFS-AN

A =
∣∣ Pr[Succ] − 1

2

∣∣, where the probability is taken over
the coin tosses made by A and C.
Definition 2. An adversary A is said to (t, ε, qE , qS)-break an ID-based DNF
signature scheme if A runs in time at most t, A makes at most qE private key
queries and at most qS signing oracle queries, and AdvIBDNFS-AN

A is at least ε.
An ID-based DNF signature scheme is (t, ε, qE , qS)-anonymous if there exists
no adversary that (t, ε, qE , qS)-breaks it.

4. Extended GOS proof

Boneh, Goh, and Nissim [5] proposed an encryption scheme that has homo-
morphic property that allows computations on ciphertexts involving arbitrary
additions and one multiplication. Groth, Ostrovsky, and Sahai [13] constructed
efficient non-interactive witness-indistinguishable proof system based on BGN
encryption system. In this section, we construct an extended GOS proof system
for encryption of two l-bit strings (0, . . . , 0) and (1, . . . , 1). Later, we use it for
our construction of a DNF signature without random oracles. The extended
GOS proof is described as follows.

Setup(1λ): The setup algorithm takes as input a security parameter λ, then
it generates a bilinear group G of composite order n = pq, where p and q are
random primes of bit size Θ(λ), and it selects random generators g ∈ G and
h ∈ Gq. Then the common reference string is set by CRS = (n,G,GT , e, g, h).

Statement: Let A = (0, . . . , 0)l ∈ Zl
p and B = (1, . . . , 1)l ∈ Zl

p, where l < p.
The statement is a ciphertext C = (C1, . . . , Cl), and the claim is that there
exists a witness W = (M = (m1, . . . ,ml), Z = (z1, . . . , zl)) ∈ {A,B}×Zl

n such
that mi ∈ {0, 1} and Ci = gmihzi .

Prove(C,W,CRS): To generate a proof on the ciphertext C = (C1, . . . , Cl)
with the witness W = (M = (m1, . . . ,ml), Z = (z1, . . . , zl)), it first checks
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M
?∈ {A,B} and Ci

?= gmihzi for all i ∈ {1, . . . , l}. Next it defines f as f = 0
if M = A and f = 1 if M = B. Then it outputs a proof of the claim as
P =

(
π1 = gm1hz1 , . . . , πl = gmlhzl , π = (gl(2f−1) · hΣl

i=1zi)Σ
l
i=1zi

)
.

Verify(C,P,CRS): To verify the proof P = (π1, . . . , πl, π) for the ciphertext
C = (C1, . . . , Cl), it checks e(Ci, Ci/g)

?= e(h, πi) for all i ∈ {1, . . . , l}, and
checks e(

∏l
j=1 Cj ,

∏l
j=1(Cj/g))

?= e(h, π). If all tests are successful, then it
outputs “accept”; otherwise it outputs “reject”.

Remark 4.1. For A = 0 and B = 1 with bit-length 1, our extended GOS proof
is exactly the original GOS proof.

Theorem 4.2. The above extended GOS proof satisfies perfect completeness,
perfect soundness, and computational witness indistinguishability under the
subgroup decision assumption.

Proof. Perfect Completeness. We know that Ci = gmihzi where mi ∈
{0, 1}. This gives us that e(Ci, Ci/g) = e(gmihzi , gmi−1hzi) = e(g, g)mi(mi−1) ·
e(hzi , g2mi−1hzi) = e(h, πi) for all i ∈ {1, . . . , l}. Let zsum =

∑l
i=1 zi. We

have
∏l

i=1 Ci = gΣl
i=1mihzsum

, where
∑l

i=1mi ∈ {0, l}, and f is defined as f =
(
∑l

i=1mi)/l. Thus we have e(
∏l

i=1 Ci,
∏l

i=1(Ci/g)) = e(g, g)Σ
l
i=1mi·Σl

i=1(mi−1)·
e(hzsum

, gΣl
i=1(2mi−1)hzsum

) = e(h, (gl(2f−1)hzsum

)zsum

) = e(h, π).

Perfect Soundness. Since the proof πi satisfies the verification equation, we
have e(Ci, Ci/g)q = e(h, πi)q = e(hq, πi) = 1 for all i ∈ {1, . . . , l}. This means
that Ci or Ci/g has order 1 or q. Since Ci can be written as gmihzi for some
mi ∈ Zp, zi ∈ Zn, we see that gmihzi or gmi−1hzi has order 1 or q. Since h has
order q, this means that mi = 0 mod p or mi − 1 = 0 mod p.

Since the proof π is a valid one, we have e(
∏l

i=1 Ci,
∏l

i=1(Ci/g))q = e(h, π)q

= e(hq, π) = 1. This means that
∏l

i=1 Ci or
∏l

i=1(Ci/g) has order 1 or q. Since
Ci is well formed as gmihzi , where mi ∈ {0, 1}, it implies that gΣl

i=1mihzsum

or gΣl
i=1(mi−1)hzsum

has order 1 or q. Since h has order q, this means that∑l
i=1mi = 0 mod p or

∑l
i=1(mi − 1) = 0 mod p. If at least one mi is 1,

where mi ∈ {0, 1}, then
∑l

i=1mi 6= 0 mod p. Thus the equation
∑l

i=1mi = 0
mod p gives us that all mi are 0. Next if at least one mi = 0, then

∑l
i=1mi 6= l

mod p. Thus the equation
∑l

i=1mi = l mod p gives us that all mi are 1.
Therefore we have that (m1, . . . ,ml) is (0, . . . , 0)l or (1, . . . , 1)l in Zl

p.

Computational Witness Indistinguishability. If h is a generator of G
instead of Gq, there exist zi0, zi1 ∈ Zn such that Ci = hzi0 = ghzi1 for all
i ∈ {1, . . . , l}. This implies that

∏l
i=1 Ci = hΣl

i=1zi0 = glhΣl
i=1zi1 . Let (π|f=c)

the value which π is assigned if f is set to c ∈ {0, 1}. We have (πi|f=0) =(
g−1hzi0

)zi0 =
(
hzi1

)zi0 =
(
hzi0

)zi1 =
(
ghzi1

)zi1 = (πi|f=1) and (π|f=0) =
(
g−lhΣl

i=1zi0
)Σl

i=1zi0 =
(
hΣl

i=1zi1
)Σl

i=1zi0 =
(
hΣl

i=1zi0
)Σl

i=1zi1 =
(
glhΣl

i=1zi1
)Σl

i=1zi1
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= (π|f=1). Thus the proof gives no information about the witness. If h is
a generator of Gq, then it equals with our extended GOS proof. Therefore
the difference probability between two cases of h gives the advantage of the
subgroup decision assumption. ¤

5. Construction with random oracles

In this section, we construct a non-interactive ID-based DNF signature
scheme and prove the security of our scheme in the random oracle model. De-
sign intuition for our construction is consistently combining Shacham-Waters
ring signature scheme [22] with Gentry-Ramzan multi-signature scheme [11].
To combine these two schemes, we work in a bilinear group of composite order.
Our construction is described as follows.

5.1. Description

Setup(1λ): The setup algorithm first generates a bilinear group G of com-
posite order n = pq, where p and q are random primes of bit size Θ(λ). Next, it
chooses random g, w ∈ G, h ∈ Gq, and s ∈ Zn. Finally it chooses cryptographic
hash functions H1,H2 : {0, 1}∗ → G. Then the public parameters PP and the
master secret key MK are set by

PP =
(
n,G,GT , e, g, g1 = gs, h, h1 = hs, w,H1,H2

)
, MK = s.

KeyGen(ID,MK,PP): The key generation algorithm takes as input an iden-
tity ID, the master secret key MK, and the public parameters PP, then outputs
a private key SKID = H1(ID)s.

Sign(M,ψ,SKID,PP): The sign algorithm takes as input a message M , a
DNF formula ψ, a private key SKID = H1(ID)s. Next, it computes Hm =
H2(M,ψ), chooses a random r ∈ Zn, and then outputs an individual signature
θ = (V,R) =

(
H1(ID)s ·Hr

m, g
r
) ∈ G2.

Merge(M,ψ, SS,PP): The merge algorithm takes as input a message M , a
DNF formula ψ = ∨a

i=1∧bi
j=1 IDi,j , a set SS = {(IDi∗,j , θi∗,j)}1≤j≤bi∗ , where i∗ is

an index such that 1 ≤ i∗ ≤ a and θi∗,j is an individual signature (Vi∗,j , Ri∗,j)
that was generated by IDi∗,j . Let {fi}1≤i≤a be such that fi = 1 if i = i∗ and
fi = 0 if i 6= i∗. To generate a signature, it proceeds as follows:

(1) First, it constructs a (aggregate) multi-signature of the message M as
Ṽ =

∏bi∗
j=1 Vi∗,j and R̃ =

∏bi∗
j=1Ri∗,j using the set SS.

(2) For each i ∈ {1, . . . , a}, it chooses a random zi ∈ Zn and computes
(Ci = (Yi/w)fihzi , πi = ((Yi/w)2fi−1hzi)zi) where Yi=

∏bi

j=1H1(IDi,j).
(3) To convert (Ṽ , R̃) as a blinded one that is verifiable and anonymous,

it sets z =
∑a

i=1 zi and constructs σ1 = Ṽ · hz
1 and σ2 = R̃.

(4) It outputs a DNF signature σ =
(
σ1, σ2, {(Ci, πi)}1≤i≤a

) ∈ G2a+2.
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Verify(σ,M,ψ,PP): The verify algorithm takes as input a signature σ, a
message M and a DNF formula ψ = ∨a

i=1 ∧bi
j=1 IDi,j , then proceeds as follows:

(1) For all i ∈ {1, . . . , a}, it checks if e(Ci, Ci/(Yi/w)) ?= e(h, πi), where
Yi =

∏bi

j=1H1(IDi,j).

(2) Next, it checks if e(g, σ1)
?= e(g1, w

∏a
i=1 Ci) · e(σ2, Hm), where Hm =

H2(M,ψ).
(3) If all tests are successful, then it outputs “accept”; otherwise it outputs

“reject”.
It is easy to show that the above scheme satisfies the correctness as follows.

e(g, σ1) = e(g,
bi∗∏

j=1

(H1(IDi∗,j)sHrj
m ) · hz

1) = e(gs, Yi∗ · hz) · e(
bi∗∏

j=1

grj ,Hm)

= e(g1, w
a∏

i=1

Ci) · e(σ2,Hm),

where Yi∗ =
∏bi∗

j=1H1(IDi∗,j) and z =
∑a

i=1 zi.

5.2. Security

Theorem 5.1. The above ID-based DNF signature scheme satisfies unforge-
ability under the CDH assumption on Gp in the random oracle model.

Proof. In this proof, we construct an algorithm B that solves the CDH problem
in Gp running an adversary A attacking the presented scheme. Note that each
proof (Ci, πi) in a forged signature generated by A must pass the verification
equation, e(Ci, Ci/(Yi/w)) = e(h, πi). As described in [13], this implies that
Ci has the form (Yi/w)fihzi for some fi ∈ {0, 1} and zi ∈ Zn. According to
the value of

∑a
i=1 fi, we consider two types of adversaries as follows.

(1) Type-1 adversary A1 is one of which forgery is not such that exactly
one of the exponents {fi} equals 1, that is,

∑a
i=1 fi 6= 1.

(2) Type-2 adversary A2 is one of which forgery is such that exactly one
of the exponents {fi} equals 1, that is,

∑a
i=1 fi = 1.

For each type of adversary A1 and A2, we will construct algorithms B1 and B2

to solve the CDH problem in Gp, respectively. The proof easily follows from
the following two lemmas. ¤

Before giving the detailed proofs of the following lemmas, we give the intu-
itive description of them. In case of the type-2 adversary A2, the algorithm B2

can extract an ID-based signature from the output of A2, because B2 knows
the factorization p, q of n and the output of A2 satisfies

∑a
i=1 fi = 1.

In case of the type-1 adversary A1, the algorithm B1 can not use the method
of B2 because the output of A1 satisfies

∑a
i=1 fi 6= 1. Instead it uses Shacham-

Waters ring signature technique [22]. That is, it embeds gα
p and gβ

p of the
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CDH assumption to the g1 and w of the public parameters, respectively. If
the output of A1 satisfies

∑a
i=1 fi 6= 1, then it can solve the CDH assumption

using the output of A1.

Lemma 5.2. If there exists a type-1 adversary A1, then there exists an algo-
rithm B1 that solves the CDH problem.

Proof. Suppose there exists a type-1 adversary A1 that breaks unforgeability
of the above scheme. The algorithm B1 that solves the CDH problem using A1

is given: The description of the bilinear group G, the factorization p, q of order
n, and a random CDH challenge (gp, g

α
p , g

β
p ) ∈ G3

p, where gp is a generator of
Gp. Its goal is to compute gαβ

p . The algorithm B1 interacts with A1 as follows:

Setup: B1 selects a generator h ∈ Gq and chooses random values r1 ∈
Z∗q , r2, r3 ∈ Zq. Next it sets the public parameters PP = (n,G,GT , e, g =
gph

r1 , g1 = gα
p h

r2 , h, h1 = hr2/r1 , w = gβ
ph

r3 ,H1,H2) and gives PP to A1. The
PP are correctly distributed because e(g1, h) = e(gα

p h
r2 , h) = e(hr1 , hr2/r1) =

e(gph
r1 , hr2/r1) = e(g, h1).

Queries: AdaptivelyA1 can make anH1-hash query,H2-hash query, private
key query, or signature query at any time. For hash queries, B1 maintains H1-
list and H2-list relating to its previous hash query responses for consistency.

For a H1-hash query on IDi, B1 generates a random ci ∈ Zn and responds
with H1(IDi) = gci . For a H2-hash query on (Mi, ψi), B1 generates a random
di ∈ Zn and responds with H2(Mi, ψi) = gdi . For a private key query on IDi,
B1 can generate the private key gci

1 because it knows the discrete logarithm
ci = logg H1(IDi) of H1-hash values. Using the private key, it is easy to respond
for individual signature queries and signature queries.

Output: Finally, A1 outputs a forged DNF signature (σ∗,M∗, ψ∗), where
σ∗ = (σ1, σ2, {(Ci, πi)}1≤i≤a) and ψ∗ = ∨a

i=1 ∧bi
j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE by private key queries
satisfies the DNF formula ψ∗; or (2) let S be the set of identity that was
requested an individual signatures queries for (M∗, ψ∗), then S ∪ C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗,M∗, ψ∗,PP) 6= “accept”, then B1 stops the simulation because
A1 was not successful.
B1 solves the given CDH problem as follows: Let δp be such that δp =

0 mod q and δp = 1 mod p. By the property of bilinear groups of com-
posite order, we have uδp ∈ Gp for all u ∈ G, because uδp = 1 if and
only if u ∈ Gq. We obtain C

δp

i = (Y δp

i /wδp)fi = ((
∏bi

j=1 g
ci,j )δp/wδp)fi =

(g
Σ

bi
j=1ci,j

p /gβ
p )fi for all i ∈ {1, . . . , a}, and so Cδp =

∏a
i=1 Ci

δp = gc
p/(g

β
p )f ,

where c =
∑a

i=1(
∑bi

j=1 ci,j)fi and f =
∑a

i=1 fi. From the verification equation,
we obtain e(gp, σ1

δp) = e(gα
p , g

β
p · gc

p/(g
β
p )f ) · e(σ2

δp , gd
p), where H2(M∗, ψ∗)δp =
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gd
p . By restating this equation, we have e(gα

p , g
β
p )1−f = e(gp, σ1

δp · (σ2
δp)−d ·

(gα
p )−c). B1 can recover (IDi,j , ci,j) and (M∗, ψ∗, d) from the H1-list and the

H2-list. In addition, B1 recovers {fi}1≤i≤a values using the property Cδp

i = 1
if and only if fi = 0. By assumption that f =

∑a
i=1 fi 6= 1, we know that

(1− f)−1 (mod p) exists. Therefore, it solves the CDH problem as follows:

gαβ
p =

(
σ1

δp · (σ2
δp)−d · (gα

p )−c
)1/(1−f)

.

Since B1 succeeds whenever A1 does, we obtain the inequality AdvCDH
B1

≥
AdvIBDNF-UF

A1
. ¤

Lemma 5.3. If there exists a type-2 adversary A2, then there exists an algo-
rithm B2 that solves the CDH problem.

Proof. Suppose there exists a type-2 adversary A2 that breaks unforgeability
of the above scheme. The algorithm B2 that solves the CDH problem using A2

is given: The description of the bilinear group G, the factorization p, q of order
n, and the tuple (gp, g

α
p , g

β
p ) ∈ G3

p, where gp is a generator of Gp. Its goal is to
compute gαβ

p . B2 interacts with A2 as follows:

Setup: B2 selects a generator h ∈ Gq, chooses random values r1 ∈ Z∗q ,
r2, r3, r4 ∈ Zq, r5 ∈ Zp. Next it sets PP = (n,G,GT , e, g = gph

r1 , g1 =
gα

p h
r2 , h, h1 = hr2/r1 , w = gr5

p h
r3 ,H1,H2) and g2 = gβ

ph
r4 . Then it gives PP to

A. The PP are correctly distributed by e(g1, h) = e(gα
p h

r2 , h) = e(hr1 , hr2/r1) =
e(gph

r1 , hr2/r1) = e(g, h1).

Queries: AdaptivelyA2 can make anH1-hash query,H2-hash query, private
key query, or signature query at any time. For hash queries, B2 gives identical
responses to identical queries by maintaining lists relating to its previous hash
query responses for consistency.

For a H1-hash query on IDi, B2 responds as follows: If IDi was in a previous
H1-hash query, it recovers (IDi,H1-coini, ci) from its H1-list; else, it generates a
randomH1-coini ∈ {0, 1} so that Pr[H1-coini = 1] = ρ1 for ρ1 to be determined
later. It generates random ci ∈ Z∗n and logs (IDi,H1-coini, ci) in its H1-list.
If H1-coini = 0 then it responds with H1(IDi) = gci ; else, it responds with
H1(IDi) = gci

2 .
For a H2-hash query on (Mi, ψi), B2 responds as follows: If (Mi, ψi) was in

a previous H2-hash query, it recovers (Mi, ψi, H2-coini, di, d
′
i) from its H2-list;

else, it generates a random H2-coini ∈ {0, 1} so that Pr[H2-coini = 1] = ρ2 for
ρ2 to be determined later. If H2-coini = 0, it generates a random di ∈ Zn and
sets d′i = 0; else it generates random di, d

′
i ∈ Z∗n. It logs (Mi, ψi,H2-coini, di, d

′
i)

in its H2-list. It responds with H2(Mi, ψi) = gdig
d′i
1 .

For a private key query on IDi, B2 first recovers (IDi, H1-coini, ci) from H1-
list. If H1-coini = 0, then it responds with SKIDi = gci

1 = H1(IDi)s; else, it
aborts.
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For an individual signature query on (Mi, ψi, IDi), B2 responds as follows: It
first recovers (IDi,H1-coini, ci) from H1-list and (Mi, ψi,H2-coini, di, d

′
i) from

H2-list. If H1-coini = 0, it generates a random r ∈ Zn and outputs a signature
θi = (Vi, Ri) such that Vi = gci

1 · Hr
m = H1(IDi)s · Hr

m and Ri = gr, where
Hm = H2(Mi, ψi); else if H1-coini = 1 and H2-coini = 0, it aborts; else if
H1-coini = 1 and H2-coini = 1, it generates a random r ∈ Zn and outputs

a signature as θi = (Vi, Ri) such that Vi = (gci
2 )

− di
d′

i · (gdig
d′i
1 )r = (gci

2 )s ·
(gdig

d′i
1 )

(r− ci
d′

i
·β∗)

= H1(IDi)s · Hr′
m and Ri = gr · g

− ci
d′

i
2 = g

(r− ci
d′

i
·β∗)

= gr′ by
letting g2 = gβ∗ .

For a signature query on (Mk, ψk), where ψk = ∨a
i=1 ∧bi

j=1 IDi,j , B2 responds
as follows: First it recovers (Mk, ψk,H2-coink, dk, d

′
k) from H2-list and selects

an index i∗ such that 1 ≤ i∗ ≤ a, then it generates individual signatures for all
j ∈ {1, . . . , bi∗} using the above simulation method if there is no j such that
H1-coini∗,j = 1 and H2-coini∗,j = 0; If there is no i∗, then it abort. Finally it
constructs a signature σk using the merge algorithm.

Output: Finally, A2 outputs a forged DNF signature (σ∗,M∗, ψ∗), where
σ∗ = (σ1, σ2, {(Ci, πi)}1≤i≤a) and ψ∗ = ∨a

i=1 ∧bi
j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE by private key queries
satisfies the DNF formula ψ∗; or (2) let S be the set of identity that was
requested an individual signatures queries for (M∗, ψ∗), then S ∪ C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗,M∗, ψ∗,PP) 6= “accept”, then B2 stops the simulation because
A2 was not successful.
B2 solves the given CDH problem as follows: Let δp be such that δp = 0

mod q and δp = 1 mod p. B2 recovers {fi}1≤i≤a values using the property
C

δp

i = 1 if and only if fi = 0. Since there is exactly one index i∗ such that
fi∗ = 1, it can recover the index i∗ and {IDi∗,j}1≤j≤bi∗ that were used to
generate the forgery. Next it recovers (IDi∗,j ,H1-coini∗,j , ci∗,j) from H1-list
for all j ∈ {1, . . . , bi∗} and recovers (M∗, ψ∗,H2-coin, d, d′) from H2-list. Let
B0 be a set of index j such that H1-coini∗,j = 0 and B1 be a set of index j
such that H1-coini∗,j = 1. If H2-coin∗ = 1, it aborts; otherwise, we obtain an
equation as follows:

σ1 =
bi∗∏

j=1

(
H1(IDi∗,j)s ·Hrj

m

) · hz
1

=
∏

j∈B0

H1(IDi∗,j)s ·
∏

j∈B1

H1(IDi∗,j)s ·
bi∗∏

j=1

(gd∗)rj · hz
1

=
∏

j∈B0

(gci∗,j )s ·
∏

j∈B1

(gci∗,j

2 )s · σ2
d · hz

1
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= g
Σj∈B0ci∗,j

1 · gs·Σj∈B1ci∗,j

2 · σ2
d · hz

1.

Let cB0 =
∑

j∈B0
ci∗,j and cB1 =

∑
j∈B1

ci∗,j . If cB1 mod n = 0, it aborts
because it can’t solve the CDH problem; otherwise, we obtain gs

2 =
(
σ1 · σ−d

2 ·
g
−cB0
1 · h−z

1

)1/cB1 by rearranging the above equation. Additionally, we have
e(g1, g2) = e(gα

p h
r2 , gβ

ph
r4) = e(gph

r1 , gαβ
p hr2r4/r1) = e(g, gs

2). Therefore, it
solves the CDH problem as follows:

gαβ
p = (gs

2)
δp =

(
σ1

δp · (σ2
δp)−d · (gα

p )−cB0
)1/cB1 .

Analysis. For the analysis, let abort be the event that B2 aborts during the
simulation, let forge be the event that A2 produces a valid forgery according
to the definition of unforgeability game. We have

AdvCDH
B2

≥ Pr[forge ∧ ¬abort] = Pr[forge|¬abort] · Pr[¬abort]

= AdvIBDNF-UF
A2

· Pr[¬abort].

The third equality follows from the fact that if the abort does not occur then
the above simulation equals with the unforgeability game.

Let abortE be the event that B2 aborts at the private key query step, abortS
be the event that B2 aborts at the signature query (including the individual
signature query) step, abortM be the event that B2 aborts when H2-coin∗ = 1
after A2 outputs a forgery, and abortC be the event that B2 aborts when cB1

mod p = 0. Then we have

Pr[¬abort] = Pr[¬abortE ∧ ¬abortS ∧ ¬abortM ∧ ¬abortC ]
= Pr[¬abortE ] · Pr[¬abortS |¬abortE ] ·

Pr[¬abortM ∧ ¬abortC |¬abortE ∧ ¬abortS ]
= Pr[¬abortE ] · Pr[¬abortS |¬abortE ] · Pr[¬abortM ] ·

Pr[¬abortC |¬abortE ∧ ¬abortS ]
≥ (1− ρ1)qE · ρqS

2 · (1− ρ2) · (1− 1/p)ρ1.

The third equality follows from the facts that the events abortM and abortC are
independent and abortM is independent of other events. The forth inequality
follows from probability calculations.

To complete the analysis, let us define f(ρ1, ρ2) = A · (1− ρ1)qEρ1 · ρqS

2 (1−
ρ2), where A = (1 − 1/p). It is not hard to obtain that f is maximized at
ρopt
1 = 1/(qE + 1) and ρopt

2 = qS/(qS + 1). This gives us that f(ρopt
1 , ρopt

2 ) ≈
A/(e2qEqS). By setting ρ1 = ρopt

1 and ρ2 = ρopt
2 in the simulation, we obtain

AdvCDH
B2

≥ AdvIBDNF-UF
A2

· (1− 1/p)
e2 qE qS

.

This completes our proof. ¤

Theorem 5.4. The above ID-based DNF signature scheme satisfies anonymity
under the SD assumption in a bilinear group G of composite order n.
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Proof. Suppose there exists an adversary A that breaks anonymity of the above
scheme. First we define two games G0 and G1 as the anonymity game with
the following differences. In the game G0, h is chosen uniformly from Gq; but
in the game G1, h is chosen uniformly from G. Let AdvGb

A be the advantage A
has over 1/2 in the game Gb for b ∈ {0, 1}. The proof can be obtained from
Lemma 5.5 and Lemma 5.6. ¤

Lemma 5.5. For any polynomially bounded adversary, AdvIBDNFS-AN
A −AdvG1

A ≤
2AdvSD

B,G,Gq
.

Proof. Consider an algorithm B that plays the subgroup decision game. Given
the subgroup decision challenge (n,G,GT , e, h), B plays the anonymity game
with A as follows.

Setup: B follows the setup algorithm using the given subgroup decision
challenge (n,G,GT , e, h). Next it gives PP to A.

Queries: B can correctly respond to A’s various queries, since it knows the
master secret key.

Challenge: A requests a challenge with the values (M,ψ, i0, i1), where
ψ = ∨a

i=1 ∧bi
j=1 IDi,j and 1 ≤ i0 6= i1 ≤ a. Then B chooses a random bit

c ∈ {0, 1} and computes the challenge signature σ using the sign and merge
algorithms for the index ic, and gives σ to A.

Output: Finally, A outputs its guess c′ for c. B outputs b = 1 if c = c′,
b = 0 otherwise.

Clearly, we have AdvG0
A = AdvIBDNFS-AN

A because h is a generator of Gq. As we
know that Pr[h ∈ G] = Pr[h ∈ Gq] = 1/2, we obtain

AdvG0
A − AdvG1

A = Pr[b = 1|h ∈ Gq]− Pr[b = 1|h ∈ G]

= 2 Pr[b = 1, h ∈ Gq]− 2Pr[b = 1, h ∈ G] ≤ 2AdvSD
B,G,Gq

.

This completes our proof. ¤

Lemma 5.6. For any adversary A, we have that AdvG1
A = 0.

Proof. We argue that when h is chosen from G instead of Gq, then the challenge
signature is statistically independent of signer identity set, that is, AdvG1

A = 0.
Consider the challenge signature σ = (σ1, σ2, {(Ci, πi)}1≤i≤a) and determine
what an adversary can deduce from it.

First, observe that σ2 is unrelated to the choice of signer. Next, consider
Ci = (Yi/w)fihzi and πi = ((Yi/w)2fi−1hzi)zi for each i. When h is a gen-
erator of G, there exist τi0, τi1 ∈ Zn such that Ci = (Yi/w)hτi1 = hτi0 . De-
noting by (πi|fi=b) the value which πi is assigned if fi is set to b ∈ {0, 1}, we
have (πi|fi=1) = ((Yi/w)1hτi1)τi1 = (hτi0)τi1 = (hτi1)τi0 = ((Yi/w)−1hτi0)τi0 =
(πi|fi=0). So the pair (Ci, πi) is consistent with either fi = 0 or fi = 1 for
each i, and A gains no information from this part of the signature. Last, we
consider σ1. If σ2 and {(Ci, πi)} are fixed, σ1 is the unique value satisfying
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the verification equation. Specifically, letting g1 = gs, σ2 = gr, and wC = gc

(all of which a computationally unbounded adversary can obtain), we have
σ1 = gcs ·Hr

m. Thus this value gives no information about the signer identity
set. This establishes AdvG1

A = 0. ¤

6. Construction without random oracles

In this section, we construct an ID-based DNF signature without random
oracles.

Design Principle. The main idea of our construction to remove random
oracles is combining Shacham-Waters ring signature scheme [22] with Waters
two-level signature scheme [24]. However, a simple combination of the two
schemes does not lead to a provably secure scheme, because Waters two-level
signature scheme reveals the number of actual signers through the size of signa-
ture. To overcome the problem, we first construct an ID-based DNF signature
where the number of identities in conjunctions is the same and then we remove
the restriction.

For the construction where the number of identities in conjunctions is the
same, each signer first generates Waters two-level signature by re-randomizing
the private key to break linkability of the signature. Next, a representor of
signers combines these signatures to generate a DNF signature associated with
a DNF formula ψ = ∨a

i=1 ∧b
j=1 IDi,j . This DNF formula ψ can be represented

as a b × a matrix where each column has identities in conjunction of ψ. We
use Shacham-Waters ring signature techniques for each row by constructing
BGN encryptions and GOS proofs for each entry in the matrix. To guarantee
that the actual signers come from the same column in the matrix, we apply
our extended GOS proof technique to each column. Additionally, we construct
BGN encryptions and GOS proofs for each bit value of actual signers. Since
the product of BGN encryptions of each bit value is the same with the product
of BGN encryption of rows in the matrix, these are redundant values. However
we need these values for our security proof. The construction is described as
follows.

6.1. Description

Setup(1λ): The setup algorithm first generates a bilinear group G of com-
posite order n = pq, where p and q are random primes of bit size Θ(λ). Next,
it chooses random g, g2, u

′, u1, . . . , ul, v
′, v1, . . . , vm, w ∈ G, h ∈ Gq, α ∈ Zn,

and a collision-resistant hash function H : {0, 1}∗ → {0, 1}m. Then the public
parameters PP and the master secret key MK are set by

PP =
(
n,G,GT , e, g, g1 = gα, g2, h, u

′, u1, . . . , ul, v
′, v1, . . . , vm, w,H

)
,

MK = gα
2 .

KeyGen(ID,MK,PP): The key generation algorithm takes as input an iden-
tity ID = (κ1, . . . , κl) ∈ {0, 1}l, the master secret key MK, and the public
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parameters PP, then it chooses a random exponent s1 ∈ Zn and outputs

SKID = (K1,K2,K3) =
(
gα
2 · (u′

l∏

i=1

uκi
i )s1 , gs1 , hs1

) ∈ G3.

Sign(M,ψ,SKID,PP): The sign algorithm takes as input a message M , a
DNF formula ψ, and a private key SKID. Next, it computes (µ1, . . . , µm) =
H(M,ψ) and chooses random exponents s2, r ∈ Zn, then it constructs V =
K1 · (u′

∏l
i=1 u

κi
i )s2 · (v′∏m

j=1 v
µj

j )r, S = K2 · gs2 , T = K3 · hs2 , and R = gr.
By letting s = s1 + s2, it outputs an individual signature as

θ =
(
V, S, T,R

)
=

(
gα
2 · (u′

l∏

i=1

uκi
i )s · (v′

m∏

j=1

v
µj

j )r, gs, hs, gr
) ∈ G4.

Merge(M,ψ, SS,PP): The merge algorithm takes as input a message M , a
DNF formula ψ = ∨a

i=1 ∧b
j=1 IDi,j , a set SS = {(IDi∗,j , θi∗,j)}1≤j≤b, where

i∗ is an index such that 1 ≤ i∗ ≤ a and θi∗,j is an individual signature
(Vi∗,j , Si∗,j , Ti∗,j , Ri∗,j) that was generated by IDi∗,j . Let {fi}1≤i≤a be such
that fi = 1 if i = i∗ and fi = 0 if i 6= i∗. To generate a signature, it proceeds
as follows:

(1) First, it constructs a (unaggregate) multi-signature of the message M
as {(Ṽj = Vi∗,j , S̃j = Si∗,j , T̃j = Ti∗,j , R̃j = Ri∗,j)}1≤j≤b using the
set SS.

(2) For all i ∈ {1, . . . , a}, it chooses random zi,1, . . . , zi,b ∈ Zn and com-
putes {(Ci,j = (Yi,j/w)fihzi,j , πC

i,j = ((Yi,j/w)2fi−1hzi,j )zi,j}1≤j≤b,
where Yi,j = u′

∏l
k=1 u

κi,j,k

k and IDi,j = (κi,j,1, . . . , κi,j,l) ∈ {0, 1}l.
Next, it computes {πcol

i = ((
∏b

j=1(Yi,j/w))2fi−1hzcol
i )zcol

i }1≤i≤a, where

zcol
i =

∑b
j=1 zi,j .

(3) For all j ∈ {1, . . . , b}, it chooses random tj,1, . . . , tj,l−1 ∈ Zn and sets
tj,l =

∑a
i=1 zi,j −

∑l−1
k=1 tj,k, then it constructs {(Dj,k = u

κi∗,j,k

k ·
htj,k , πD

j,k = (u2κi∗,j,k−1

k · htj,k)tj,k)}1≤k≤l for the identity IDi∗,j =
(κi∗,j,1, . . . , κi∗,j,l) ∈ {0, 1}l.

(4) To convert {(Ṽj , S̃j , T̃j , R̃j)}1≤j≤b as a blinded one that is verifiable and
anonymous, it sets {zrow

j =
∑a

i=1 zi,j}1≤j≤b and constructs {(σ1,j =

Ṽj · T̃ zrow
j

j , σ2,j = S̃j , σ3,j = R̃j)}1≤j≤b.

(5) The final signature is output as

σ =
({(σ1,j , σ2,j , σ3,j}1≤j≤b, {({(Ci,j , π

C
i,j)}1≤j≤b, π

col
i )}1≤i≤a,

{(Dj,k, π
D
j,k)}1≤j≤b,1≤k≤l

) ∈ G2ab+a+3b+2lb.

Verify(σ,M,ψ,PP): The verify algorithm takes as input a signature σ, a
message M , and a DNF formula ψ = ∨a

i=1 ∧b
j=1 IDi,j , then it proceeds as

follows:
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(1) For all i ∈ {1, . . . , a}, it computes Yi,j = u′
∏l

k=1 u
κi,j,k

k where IDi,j =

(κi,j,1, . . . , κi,j,l), then it checks if e(Ci,j , Ci,j/(Yi,j/w)) ?= e(h, πC
i,j) for

all j ∈ {1, . . . , b}, and checks if e(
∏b

j=1 Ci,j ,
∏b

j=1(Ci,j/(Yi,j/w))) ?=
e(h, πcol

i ).
(2) For all j ∈ {1, . . . , b}, it checks if e(Dj,k, Dj,k/uk) ?= e(h, πD

j,k) for all

k ∈ {1, . . . , l}, and u′
∏l

k=1Dj,k
?= w

∏l
i=1 Ci,j .

(3) Next, it computes (µ1, . . . , µm) = H(M,ψ) and checks if e(g, σ1,j)
?=

e(g1, g2) · e(σ2,j , w
∏a

i=1 Ci,j) · e(σ3,j , v
′∏m

i=1 v
µi

j ) for all j ∈ {1, . . . , b}.
(4) If all tests are successful, then it outputs “accept”; otherwise it outputs

“reject”.
It is easy to show that the above scheme satisfies the correctness as follows.

e(g, σ1,j) = e(g, gα
2 · (u′

l∏

k=1

u
κi∗,j,k

k )sj · (v′
m∏

k=1

vµk

k )rj · hsj ·zrow
j )

= e(g1, g2) · e(σ2,j , w

a∏

i=1

Ci,j) · e(σ3,j , v
′

m∏

k=1

vµk

k ),

where w
∏a

i=1 Ci,j = (u′
∏l

k=1 u
κi∗,j,k

k ) · hzrow
j .

6.2. Security

Theorem 6.1. The above ID-based DNF signature scheme satisfies unforge-
ability under the CDH assumption on Gp and the collision-resistant hash func-
tion H.

Proof. In this proof, we suppose that the adversary does not cause hash col-
lision. That is, it does not issue two message pair (M,ψ) and (M ′, ψ′) such
that (M,ψ) 6= (M ′, ψ′) but H(M,ψ) = H(M ′, ψ′). Note that if the adversary
causes hash collision, it can be converted to an adversary for collision-resistant
hash functions. Thus we can divide the adversary as two types according to
their forgery as follows.

(1) Type-1 adversary A1 is one of which forgery is not such that exactly
one of the exponents {fi} equals 1, that is,

∑a
i=1 fi 6= 1.

(2) Type-2 adversary A2 is one of which forgery is such that exactly one
of the exponents {fi} equals 1, that is,

∑a
i=1 fi = 1.

For each type of adversary A1 and A2, we will construct algorithms B1 and B2

respectively. The proof easily follows from following two lemmas and facts that
the CDH attacker can be constructed from the discrete logarithm attacker and
Waters two-level signature is secure under the CDH assumption. ¤

Before giving the detailed proofs of the following lemmas, we give the intu-
itive description of them. In case of the type-2 adversary A2, the algorithm B2
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can extract an ID-based signature from the output of A2, because B2 knows
the factorization p, q of n and the output of A2 satisfies

∑a
i=1 fi = 1.

In case of the type-1 adversary A1, the algorithm B1 can not use Shacham-
Waters ring signature technique [22] because it can not embed the CDH in-
stances to the public parameters. That is, it should embeds gα

p and gβ
p of the

CDH assumption to the gs1 of the private key and w of the public parameters
respectively to use Shacham-Waters ring signature technique. But gs1 of the
private key is not a fixed one, so B1 can not embed gα

p to gs1 . Instead, B1

solves the discrete logarithm problem of w using the {(Dj,k, π
D
j,k)} values.

Lemma 6.2. If there exists a type-1 adversary A1, then there exists an algo-
rithm B1 that solves the discrete logarithm problem on Gp.

Proof. Suppose there exists a type-1 adversary A1 that breaks unforgeability of
the above scheme. The algorithm B1 that solves the discrete logarithm problem
using A1 is given: The description of the bilinear group G, the factorization
p, q of order n, and the tuple (gp, g

α
p ), where gp is a generator of Gp. Its goal

is to compute α. Then B1 that interacts with A1 is described as follows.

Setup: B1 selects random generators (g, g2, v′, v1, . . . , vm) ∈ Gm+3, h ∈
Gq, and random exponents (γ, x′, x1, . . . , xl, y) ∈ Zl+3

n with restriction that y
mod p 6= 0. Next it selects a collision-resistant hash function H and sets PP =
(n,G,GT , e, g, g1 = gγ , g2, h, u

′ = gx′ , u1 = gx1 , . . . , ul = gxl , v′, v1, . . . , vm,
w = (gα

p h)y,H) and MK = gγ
2 .

Queries: B1 can correctly response to A1’s various queries, since it knows
the master secret key.

Output: Finally, A1 outputs a forged DNF signature (σ∗,M∗, ψ∗), where
σ∗ = ({(σ1,j , σ2,j , σ3,j)}, {({(Ci,j , π

C
i,j)}, πcol

i )}, {(Dj,k, π
D
j,k)}) and ψ∗ =

∨a
i=1 ∧b

j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE
by private key queries

satisfies the DNF formula ψ∗; or (2) let S be the set of identity that was
requested an individual signatures queries for (M∗, ψ∗), then S ∪ C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗,M∗, ψ∗,PP) 6= “accept”, then B1 stops the simulation because
A1 was not successful.
B1 can solve the given problem as follows: First, it recovers {fi}1≤i≤a by

setting fi = 0 if Cδp

i,j = 1 or fi = 1 otherwise. Let f =
∑a

i=1 fi, then f 6= 1,
because A1 is a type-1 adversary. Let I be a set of index i such that fi = 1
and Yi,j = u′

∏l
k=1 u

κi,j,k

k . Then we have w
∏a

i=1 Ci,j = w · ∏i∈I(Yi,j/w) ·
hzrow

j = w1−f ·∏i∈I Yi,j ·hzrow
j . Since the signature is valid one, it should satisfy

the verification equation by unknown identity. That is, there exists ID+
j =

(κ+
j,1, . . . , κ

+
j,l) such that w

∏a
i=1 Ci,j = Y +

j · hzrow
j , where Y +

j = u′
∏l

k=1 u
κ+

j,k

k ,

because of the equation w
∏a

i=1 Ci,j = u′
∏l

k=1Dj,k = u′
∏l

k=1 u
κ+

j,k

k · hzrow
j =
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Y +
j · hzrow

j . Thus B1 recovers the identity ID+
j from {(Dj,k, π

D
j,k)} by setting

κ+
j,k = 0 if Dδp

j,k = 1 or κ+
j,k = 1 otherwise. Let F (IDi,j) = x′ +

∑l
k=1 κi,j,k · xk,

where IDi,j = (κi,j,1, . . . , κi,j,1). We obtain the following equation from the
above two equations by raising δp to both sides

(
w(1−f)

)δp =
(
Y +

j /
∏

i∈I

Yi,j

)δp =
(
gF (ID+

j )−Σi∈IF (IDi,j)
)δp
.

Additionally, we have w = (gα
p h)

y, y mod p 6= 0, and f 6= 1. Therefore it
solves the given discrete logarithm problem as follows:

α = (F (ID+
j )−

∑

i∈I

F (IDi,j)) · y−1 · (1− f)−1 mod p.

Let AdvDL
B1

be the advantage of B1 that breaks the discrete logarithm problem.
Since B1 succeeds whenever A1 does, we have AdvDL

B1
≥ AdvIBDNF-UF

A1
. ¤

Lemma 6.3. If there exists a type-2 adversary A2, then there exists an algo-
rithm B2 that breaks the unforgeability of Waters two-level signature scheme.

Proof. Suppose there exists a type-2 adversary A2 that breaks unforgeability
of the above scheme. The algorithm B2 that forges Waters two-level signature
using A2 is given: The description of the bilinear group G, the factorization
p, q of order n, and the public parameter of Waters two-level signature as P̃P =
(p,Gp,GTp , e, g̃, g̃1, g̃2, ũ

′, ũ1, . . . , ũl, ṽ
′, ṽ1, . . . , ṽm,H), where all is in subgroups

of order p. Then B2 that interacts with A2 is described as follows.

Setup: B2 selects random generators (f, f2, h, γ′, γ1, . . . , γl, ν
′, ν1, . . . , νm) ∈

Gl+m+5
q , w ∈ G, and a random exponent β ∈ Z∗q . Next it sets the public

parameters PP = (n,G,GT , e, g = g̃f, g1 = g̃1f
β , g2 = g̃2f2, h, u

′ = ũ′γ′, u1 =
ũ1γ1, . . . , ul = ũlγl, v

′ = ṽ′ν′, v1 = ṽ1ν1, . . . , vm = ṽmνm, w,H) and gives PP
to A2.

Queries: For a private key query on ID, B2 first asks the private key of
Waters two-level signature and receives S̃KID = (K̃1, K̃2) ∈ G2

p, then it chooses
a random s ∈ Zq and constructs the private key as SKID = (K1 = K̃1 · fβ ·
(γ′

∏l
i=1 γ

κi
i )s, K2 = K̃2 · fs, K3 = hs).

For an individual signature query on (M,ψ, ID), B2 first asks the signature of
Waters two-level signature and receives θ̃ = (θ̃1, θ̃2, θ̃3), then it chooses random
s, r ∈ Zq and constructs the signature as θ = (V = θ̃1 · fβ · (γ′∏l

i=1 γ
κi
i )s ·

(ν′
∏m

i=1 ν
µi

i )r, S = θ̃2 · fs, T = hs, R = θ̃3 · fr).
For a signature query on (M,ψ), where ψ = ∨a

i=1 ∧bi
j=1 IDi,j , B2 first selects

an arbitrary index i∗ and constructs individual signatures of IDi∗,j for all j,
then it creates the final signature using the merge algorithm.
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Output: Finally, A2 outputs a forged DNF signature pair (σ∗,M∗, ψ∗),
where σ∗ = ({(σ1,j , σ2,j , σ3,j)}, {({(Ci,j , π

C
i,j)}, πcol

i )}, {(Dj,k, π
D
j,k)}) and ψ∗ =

∨a
i=1 ∧b

j=1 IDi,j .

If (1) the corrupted identities set C = {IDi}1≤i≤qE
by private key queries

satisfies the DNF formula ψ∗; or (2) let S be the set of identity that was
requested an individual signatures queries for (M∗, ψ∗), then S ∪ C satisfies
the DNF formula ψ∗; or (3) A did request a signature for a pair (M∗, ψ∗); or
(4) Verify(σ∗,M∗, ψ∗,PP) 6= “accept”, then B2 stops the simulation because
A2 was not successful.
B2 can convert the signature to Waters two-level signature as follows: First,

it recovers {fi}1≤i≤a by setting fi = 0 if Cδp

i,j = 1 or fi = 1 otherwise. Since A2

is a type-2 adversary, there is exactly one index i∗ such that fi∗ = 1. Using the
index i∗, the signers identities {IDi∗,j}1≤j≤b can be reconstructed from ψ. Let
the index j∗ be such that neither the private key for IDi∗,j∗ and an individual
signature on (M∗, ψ∗) by IDi∗,j∗ was queried by A2. By the conditions of
A2’s valid forgery, the index j∗ always exists. We obtain from the verification
equation by raising δp

e(g̃, σδp

1,j∗) = e(g̃1, g̃2) · e(σδp

2,j∗ , (w
a∏

i=1

Ci,j∗)δp) · e(σδp

3,j∗ , (v
′

m∏

i=1

vµi

j∗ )
δp)

= e(g̃1, g̃2) · e(σδp

2,j∗ , ũ
′

l∏

i=1

ũκi
j∗) · e(σδp

3,j∗ , ṽ
′

m∏

i=1

ṽµi

j∗ ).

Thus (σδp

1,j∗ , σ
δp

2,j∗ , σ
δp

3,j∗) is a valid Waters two-level signature on (M∗, ψ∗) by
the identity IDi∗,j∗ . Then B2 outputs it and halts.

Let AdvW-IBS
B2

be the advantage of B2 that breaks Waters two-level signature
scheme. Since B2 succeeds whenever A2 does, we have AdvW-IBS

B2
≥ AdvIBDNF-UF

A2
.

¤
Theorem 6.4. The above ID-based DNF signature scheme satisfies anonymity
under the SD assumption in a bilinear group G of composite order n.

Proof. Suppose there exists an adversary A that breaks anonymity of the above
scheme. First we define two games G0 and G1 as the anonymity game with
following differences. In the game G0, h is chosen uniformly from Gq; but in
the game G1, h is chosen uniformly from G. Let AdvGb

A be the advantage A
has over 1/2 in the game Gb for b ∈ {0, 1}. The proof can be obtained from
following two lemmas. ¤
Lemma 6.5. For all polynomially bounded adversary, AdvIBDNFS-AN

A −AdvG1
A ≤

2AdvSD
B,G,Gq

.

The proof is the same as the lemma 5.5.

Lemma 6.6. For any adversary A, we have that AdvG1
A = 0.
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Proof. We argue that when h is chosen from G instead of Gq, then the challenge
signature is statistically independent of signer identity set, that is, AdvG1

A = 0.
Consider the challenge signature σ = ({(σ1,j , σ2,j , σ3,j)}, {({(Ci,j , π

C
i,j)}, πcol

i )},
{(Dj,k, π

D
j,k)}) and determine what an adversary can deduce from it.

First, observe that σ2,j and σ3,j are unrelated to the choice of signer. Next,
consider {(Ci,j , π

C
i,j)}, πcol

i and {(Dj,k, π
D
j,k)} for all i, j, k. When h is a gen-

erator of G, Ci,j and Dj,k are perfect commitments, and πC
i,j , π

col
i and πD

j,k

are witness-indistinguishable proofs as shown in theorem 4.2 and lemma 5.6.
So these pairs give no information to the adversary. Last we consider σ1,j .
If σ2,j , σ3,j and {(Ci,j , π

C
i,j)} are fixed, σ1,j is the unique value satisfying the

verification equation. Specifically, letting g1 = gα, σ2,j = gs, σ3,j = gr, and
wj

∏a
i=1 Ci,j = gc (all of which a computationally unbounded adversary can

obtain), we have σ1 = gα
2 · gcs · (v′∏m

k=1 v
µk

k )r. Thus this value gives no infor-
mation about the signer identity set. This establishes AdvG1

A = 0. ¤

6.3. Removing the restriction

The restriction that the number of identities in all conjunctions should be
the same can be removed by adding dummy private keys of dummy identities
to the public parameters. Suppose that ψ is an original DNF formula such
that the number of identities in conjunctions are not the same, then we define
ψ′ as the number of identities in conjunctions are the same by adding dummy
identities to ψ. Note that we should not expand the number of disjunctions by
adding dummy identities, because it is trivial to forge the signature of ψ′ that
contains a conjunction of dummy identities only. Since private keys for dummy
identities are known to everyone, the individual signatures for dummy identities
can be generated by the merge algorithm. Unforgeability and anonymity are
follows from the facts that dummy private keys can be regarded as extracted
private keys, dummy private keys alone can’t satisfy ψ′, and security models
considers insider corruption and full key exposure.

Theorem 6.7. The modified ID-based DNF signature scheme with dummy
identities satisfies unforgeability and anonymity if the original ID-based DNF
signature scheme in the section 6.1 satisfies unforgeability and anonymity.

Proof. Unforgeability. Suppose there exists an adversary A that breaks
unforgeability of the modified ID-based DNF signature scheme (with dummy
identities). The algorithm B that breaks unforgeability of the original ID-
based DNF signature scheme is given: the public parameters of the original
one as P̃P. Let IDD,1, . . . , IDD,b̂−1 be the dummy identities of the modified
scheme, where b̂ is the maximum number of identities in a conjunction. B
asks private keys of dummy identities to the original scheme and receives
S̃KD,1, . . . , S̃KD,b̂−1. The public parameters for the modified scheme is con-
structed as PP = {P̃P, {(IDD,i, S̃KD,i)}1≤i≤b̂−1} and given to A.



766 KWANGSU LEE, JUNG YEON HWANG, AND DONG HOON LEE

ForA’s private key query or individual signature query, B asks to the original
schemes and receives S̃K or θ̃, then gives it to A. For A’s signature query on
DNF formula ψ′ with dummy identities, B selects a signer set that satisfies ψ′

and asks individual signature query for signer to the original scheme except
dummy identities, then it construct the signature using the merge algorithm.
Note that individual signatures for dummy identities can be generated from
private keys of dummy identities in public parameters. Finally, A outputs a
forgery (σ∗,M∗, ψ∗).

If A’s forgery satisfies the conditions of valid forgery in unforgeability defini-
tion and a subset of dummy identities in the public parameters does not satisfy
ψ∗, then B outputs (σ∗,M∗, ψ∗) as a forgery. Since the dummy private keys
can be regarded as extracted private keys and a subset of dummy identities
does not satisfy ψ∗, B’s forgery is also satisfies the conditions of valid forgery.
Therefore if A success, then B also success.

Anonymity. Let A be an adversary that breaks anonymity of the modified ID-
based DNF signature scheme (with dummy identities). The algorithm B that
breaks anonymity of the original ID-based DNF signature scheme is also sim-
ulated like above simulation for unforgeability. Additionally, for A’s challenge
query, B receives the response from the original scheme using A’s challenge
value, then it gives the response to A.

Since the original scheme satisfies anonymity against full key exposure and
the dummy private keys can be regarded as extracted private keys, the private
keys of dummy identities does not affect anonymity of the modified scheme.
Therefore if A success, then B also success. ¤

7. Extensions

In this section, we present two extensions of our ID-based DNF signature
with random oracles.

Multiple KGCs. One drawback of ID-based system is that the master secret
key is only kept in the Key Generation Center (KGC). This lags the scalability
of the system, thus multiple KGCs will be needed to overcome the scalability
problem. Our construction with random oracles can be modified to support
multiple KGCs. The idea is extending ID-based multi-signature to support
multiple KGCs and using our extended GOS proof for zero or one bit-strings
to guarantee that the hidden identities come from the same signers group.

Suppose that there are n number of KGCs. Each KGC with index j publishes
its public parameters as gj = gsj by selecting a random master secret key sj ,
but it use the same bilinear group of composite order with other KGCs. We
can restate a DNF formula ψ = ∨a

i=1 ∧bi
j=1 IDi,j as ψ′ = ∨a

i=1 ∧n
j=1 ∧ci,j

k=1IDi,j,k,
where bi =

∑n
j=1 ci,j . The keygen and sign algorithm are the same as our

ID-based DNF signature. To generate an ID-based DNF signature for multiple
KGCs, individual signatures are aggregated as (

∏n
j=1(

∏ci∗,j

k=1 H1(IDi∗,j,k)sj ) ·



NON-INTERACTIVE IDENTITY-BASED DNF SIGNATURE SCHEME 767

H2(M,ψ′)Σr, gΣr), then BGN encryptions, GOS proofs, and our extended GOS
proofs are added. Next the aggregated signature converted to anonymous one
for hiding the signer’s identities. Note that our extended GOS proof is essential
to guarantee that the hidden identities by BGN encryption come from the same
signers group.

Different Messages. In ID-based DNF signatures, all actual signers should
generate individual signatures on the same message. However it is natural
to allow each signer to generate an individual signature for it’s own message.
Recently, Boyen proposed a similar signature scheme in public key system [6].
The idea to construct an ID-based DNF signature for different messages is
using Gentry-Ramzan’s ID-based aggregate signature scheme [11] as a building
block. In the ID-based aggregate signature scheme, given n signatures on n
distinct messages from n distinct users, all these signatures can be aggregated
into a single short signature.

For an ID-based DNF signature for different messages, a DNF formula is
newly defined as φ = ∨a

i=1 ∧bi
j=1 (IDi,j ,Mi,j), where IDi,j is an identity and

Mi,j is a message to be signed by IDi,j . The construction is described as fol-
lows: First, the setup algorithm is almost same as our ID-based DNF signature
scheme, except that it require additional hash function H3 : {0, 1}∗ → Zn.
The keygen and sign algorithms are the same as Gentry and Ramzan’s scheme.
That is, a private key is SKID = (Qs

ID,0, Q
s
ID,1), where QID,k = H1(ID, k), and an

individual signature of IDi,j is θi,j = (Qs
IDi,j ,0 · (Qs

IDi,j ,1)
h ·Hr

w, g
r, w), where

w is a shared random, Hw = H2(w) and h = H3(IDi,j ,Mi,j , w). The merge
algorithm first aggregates the individual signatures, then constructs BGN en-
cryptions and GOS proofs as our ID-based DNF signature scheme. However,
this scheme does not provide non-interactive property because of the shared
random w.

8. Conclusion

We presented the first non-interactive ID-based DNF signatures that are
secure under the CDH and subgroup decision assumptions. Our first construc-
tion uses random oracles, but it is efficient and the size of signature is compact.
Our second construction does not use random oracles, but the size of signature
is not compact. We note that the second construction directly yields the first
ID-based ring signature to achieve signer anonymity against full key exposure
without random oracles, because an ID-based ring signature scheme is a special
case of an ID-based DNF signature scheme. Additionally we presented exten-
sions of our scheme that support multiple KGCs and different messages. One
interesting open problem is to construct a compact ID-based DNF signature
without random oracles.
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[14] J. Herranz and G. Sáez, New identity-based ring signature schemes, ICICS 2004, 27–39,
Lecture Notes in Comput. Sci., 3269, Springer-Verlang, 2004.

[15] F. Hess, Efficient identity based signature schemes based on pairings, Selected areas in
cryptography, 310–324, Lecture Notes in Comput. Sci., 2595, Springer, Berlin, 2003.

[16] K. Lee, J. Y. Hwang, and D. H. Lee, Non-interactive identity-based DNF signature
scheme and its extensions, ICISC 2008, Lecture Notes in Comput. Sci., Springer-Verlang,
2008.

[17] L. Nguyen, Accumulators from bilinear pairings and applications, Topics in cryptology–
CT-RSA 2005, 275–292, Lecture Notes in Comput. Sci., 3376, Springer, Berlin, 2005.

[18] R. Ostrovsky, A. Sahai, and B. Waters, Attribute-based encryption with non-monotonic
access structures, ACM conference on Computer and Communications Security (ACM
CCS), 195–203, 2007.

[19] R. Rivest, A. Shamir, and Y. Tauman, How to leak a secret, Advances in cryptology–
ASIACRYPT 2001 (Gold Coast), 552–565, Lecture Notes in Comput. Sci., 2248,
Springer, Berlin, 2001.

[20] A. Sahai and B. Waters, Fuzzy identity-based encryption, Advances in cryptology–
EUROCRYPT 2005, 457–473, Lecture Notes in Comput. Sci., 3494, Springer, Berlin,
2005.



NON-INTERACTIVE IDENTITY-BASED DNF SIGNATURE SCHEME 769

[21] R. S. Sandhu, E. J. Coyne, and C. E. Youman, Role-based access control models, IEEE
Computer 29 (1996), no 2, 38–47.

[22] H. Shacham and B. Waters, Efficient ring signatures without random oracles, Public
key cryptography–PKC 2007, 166–180, Lecture Notes in Comput. Sci., 4450, Springer,
Berlin, 2007.

[23] A. Shamir, Identity-based cryptosystems and signaure shcemes, CRYPTO 1984, 47–53,
Lecture Notes in Comput. Sci., 196, Springer-Verlang, 1984.

[24] B. Waters, Efficient identity-based encryption without random oralces, EUROCRYPT
2005, 114–127, Lecture Notes in Comput. Sci., 3494, Springer-Verlang, 2005.

[25] F. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, Ad-
vances in cryptology–ASIACRYPT 2002, 533–547, Lecture Notes in Comput. Sci., 2501,
Springer, Berlin, 2002.

Kwangsu Lee
Graduate School of Information Management and Security
Korea University
Seoul 136-701, Korea
E-mail address: guspin@korea.ac.kr

Jung Yeon Hwang
Electronics and Telecommunications Research Institute
Daejeon 305-700, Korea
E-mail address: videmot@etri.re.kr

Dong Hoon Lee
Graduate School of Information Management and Security
Korea University
Seoul 136-701, Korea
E-mail address: donghlee@korea.ac.kr


