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PARTIAL KEY EXPOSURE ATTACKS ON RSA AND
ITS VARIANT BY GUESSING A FEW BITS OF

ONE OF THE PRIME FACTORS

Santanu Sarkar and Subhamoy Maitra

Abstract. Consider RSA with N = pq, q < p < 2q, public encryption
exponent e and private decryption exponent d. We first study cryptanal-
ysis of RSA when certain amount of the Most Significant Bits (MSBs)
or Least Significant Bits (LSBs) of d is known. The basic lattice based
technique is similar to that of Ernst et al. in Eurocrypt 2005. However,
our idea of guessing a few MSBs of the secret prime p substantially re-
duces the requirement of MSBs or LSBs of d for the key exposure attack.
Further, we consider the RSA variant proposed by Sun and Yang in PKC
2005 and show that the partial key exposure attack works significantly
on this variant.

1. Introduction

RSA [20] is one of the most popular cryptosystems in the history of cryp-
tology. Here, we use the standard notations in RSA as follows:

• primes p, q, with q < p < 2q;
• N = pq, φ(N) = (p− 1)(q − 1);
• e, d are such that ed = 1 + kφ(N), k ≥ 1;
• N, e are publicly available and message M is encrypted as C = Me mod

N ;
• the secret key d is required to decrypt the cipher as M = Cd mod N .

Though RSA is quite safe till date if applied with proper cryptographic prac-
tices, the literature related to its cryptanalysis is quite rich. RSA is found to
be weak when the prime factors of any one of p ± 1, q ± 1 is small [19, 28].
In [11], it has been pointed out that short public exponents may cause weakness
if the same message is broadcast to many parties. One very important result
regarding RSA weak keys has been presented in [27], where it has been shown
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that N can be factored from the knowledge of N, e if d < 1
3N

1
4 . Though it has

been shown [21] that the idea of [27] cannot be substantially extended further
than the bound of d as O(N

1
4 ), many papers [3, 9, 25, 26] used the idea of

Continued Fraction (CF) expression to get different kinds of weak keys in RSA
(one may follow the material from [22, Chapter 5] for basics of CF expression
and related results). The seminal idea of [8] using lattice based techniques
has also been exploited in great detail [5, 1] to find weak keys of RSA when
d < N0.292. An outstanding survey on the attacks on RSA before the year 2000
is available in [4]. For very recent results on RSA, one may refer to [13, 17]
and the references therein.

One important model of cryptanalysis is the side channel attack such as fault
attacks, timing attacks, power analysis etc. [6, 7, 14, 15], by which an adversary
may obtain some bits of the private key d. In [6], it has been studied how many
bits of d need to be known to mount an attack on RSA. The constraint in the
work of [6] was the upper bound on e which is

√
N . The study attracted interest

and the idea of [6] has been improved in [2] where the bound of e was increased
upto N0.725. Then the work of [10] improved the result for full size public
exponent e. We present further improvement over the work of [10] noting that
if one guesses a few MSBs of p, then the requirement on the number of bits in
d gets substantially reduced.

As an example (see Example 1 later) with practical parameters, for a specific
1024 bit N and 309 bit d, the idea of [10] requires 112 many MSBs of d to be
exposed, whereas, our idea requires only 80 MSBs of d with a guess of 21 bits of
MSBs in p. First of all, the total requirement of bits to be known in our case is
80+21 = 101, which is 11 bits less than the 112 many bits to be known in [10].
More importantly, one needs to know the bits of d by side channel attacks and
a reduction of 112− 80 = 32 bits makes the chance of this kind of attack more
realistic. Further, with higher lattice dimension we get even more interesting
results where as less as 53 many MSBs of d are required with the knowledge of
21 many MSBs of p.

One may note that given the constraint q < p < 2q, a few bits of p, q can
be known in polynomial time (e.g., around 7 bits for 1024 bit N and 9 bits
for 2048 bit N following the work of [23]). This will indeed reduce the search
effort further for guessing a few MSBs of p.

As we use different notations in this paper compared to [10], let us list the
results of [10] with our notations here. Let d be of bitsize δ log2 N . Given
(δ− γ) log2 N many MSBs of d, the product N can be factored in probabilistic
polynomial time [10] (we ignore the term ε as given in [10]) if

(1) γ ≤ 5
6 − 1

3

√
1 + 6δ, or

(2) γ ≤ 1
3λ + 1

2 − 1
3

√
4λ2 + 6λ, where λ = max{γ, δ − 1

2}.

There are also some results in [10], where cryptanalysis of RSA is studied when
some LSBs of d are known.
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In this paper we use similar kind of analysis as in [10] and explain different
cases relevant to the attacks. The theoretical results are presented in Theo-
rems 2.1, 2.3. The advantages of our work over [10] are as follows.

(1) Given that a few MSBs of p can be guessed, the requirement of MSBs
of d in our attack is less than that of [10] (where no guess on p is made).

(2) The total amount of bits, to be known considering the MSBs of both
p, d in our case, is less than the number of MSBs to be known for d as
reported in [10].

(3) In Theorem 3.1, we have also studied the cryptanalysis of RSA when
some MSBs of p along with the LSBs of d are known and our results
are better than that of [10].

We also study the RSA variant proposed in [24], where e, d are more than√
N , but significantly less than N . The data used in [24] considered e, d of

the order of Nτ , where τ ≈ 0.6, say. As, ed = 1 + kφ(N), the value of k is of
the order of N2τ−1, which is significantly smaller than N . Consider that the
number of bits in k is kb; then we find that one needs to know kb many MSBs
of d to cryptanalyze RSA. This result is presented in Theorem 5.1.

The lattice based technique used here is similar to what presented in [10].
However, in [10], a full size public exponent (i.e., e of the order of N) or a full
size private exponent (i.e., d of the order of N) has been considered separately.
In this paper, we take e = Nα and d ≤ N δ to get generalized results.

Our theoretical results are supported by experimental evidences. We have
implemented the programs in SAGE 2.10.1 over Linux Ubuntu 7.04 on a com-
puter with Dual CORE Intel(R) Pentium(R) D CPU 2.80 GHz, 1 GB RAM
and 2 MB Cache.

While comparing our experimental results with that of [10], we implement
the idea of [10] on our own platform. As all the parameters for the experiments
in [10] may not be the same with our implementations, the results may vary
a little. We point out the exact experimental values presented in [10] as and
when required.

The organization of the paper is as follows. Next we present brief prelimi-
naries. In Section 2, we study the key exposure attacks when the MSBs of d
are exposed. Similar study continues in Section 3 where it is considered that
some LSBs of d is known. Section 4 lists the experimental results corresponding
to the theoretical results presented in Sections 2, 3. In Section 5, we discuss
the effect of partial key exposure attack on the RSA variant presented in [24].
Section 6 concludes the paper.

1.1. Preliminaries

Let us present some basics on lattice reduction techniques. Consider the
linearly independent vectors u1, . . . , uw ∈ Zn, when w ≤ n. A lattice, spanned
by 〈u1, . . . , uw〉, is the set of all linear combinations of u1, . . . , uw, i.e., w is the
dimension of the lattice. A lattice is called full rank when w = n. Let L be a
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lattice spanned by linearly independent vectors u1, . . . , uw, where u1, . . . , uw ∈
Zn. By u∗1, . . . , u

∗
w, we denote the vectors obtained by applying the Gram-

Schmidt process to the vectors u1, . . . , uw.
The determinant of L is defined as det(L) =

∏w
i=1 ||u∗i ||, where || · || denotes

the Euclidean norm on vectors. Given a polynomial g(x, y) =
∑

ai,jx
iyj , we

define the Euclidean norm as ‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as

‖ g(x, y) ‖∞= maxi,j |ai,j |.
It is known that given a basis u1, . . . , uw of a lattice L, LLL algorithm [16]

can find a new basis b1, . . . , bw of L with the following properties.
• ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2 for 1 ≤ i < w.
• For all i, if bi = b∗i +

∑i−1
j=1 µi,jb

∗
j then |µi,j | ≤ 1

2 for all j.

• ‖ b1 ‖≤ 2
w
2 det(L)

1
w , ‖ b2 ‖≤ 2

w
2 det(L)

1
w−1 .

By b∗1, . . . , b
∗
w, we mean the vectors obtained by applying the Gram-Schmidt

process to the vectors b1, . . . , bw.
In [8], techniques have been discussed to find small integer roots of poly-

nomials in a single variable mod n, and of polynomials in two variables over
the integers. The idea of [8] extends to more than two variables also, but the
method becomes probabilistic. The following theorem is also relevant to the
idea of [8].

Theorem 1.1 ([12]). Let g(x, y, z) be a polynomial which is a sum of ω many
monomials. Suppose g(x0, y0, z0) ≡ 0 mod n, where |x0| < X , |y0| < Y and
|z0| < Z. If ‖ g(xX, yY, zZ) ‖< n√

ω
, then g(x0, y0, z0) = 0 holds over integers.

Thus, the condition 2
w
2 det(L)

1
w−1 < n√

ω
implies that if polynomials b1, b2

(corresponding to the two shortest reduced basis vectors) have roots over 0 mod
n, then those roots hold over integers also. The solutions corresponding to each
unknown is achieved by calculating the resultant of two polynomials (if they
are algebraically independent) and then finding the solution of the resultant.

2. MSBs of d and p known

In this section we consider that certain amount of MSBs of both d, p will be
available. We will study to methods following the ideas of [10].

2.1. MSBs of d and p known: Method I

Let us start with the following result.

Theorem 2.1. Let d ≤ N δ, e = Nα and consider that d0, p0 are exposed such
that |d− d0| < Nγ and |p− p0| < Nβ. Then one can factor N (in probabilistic
polynomial time) when

γ ≤ (3− β)−
√

4β2 + 12βδ + 12βα− 12β

3
.
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Proof. Let q0 = N
p0

. We have ed − 1 = kφ(N) = k(N − (p + q − 1)). Now
writing d = d0 + d1, the above equation can be written as e(d0 + d1) − 1 =
k(N − p0− q0− (p+ q− p0− q0− 1)). This can be rewritten as ed1− (N − p0−
q0)k + k(p + q − p0 − q0 − 1) + ed0 − 1 = 0. Let us consider the corresponding
polynomial fMSB1 = ex − (N − p0 − q0)y + yz + R, where R = ed0 − 1, and
d1 is renamed as x, k is renamed as y and p + q − p0 − q0 − 1 is renamed as z.
Hence, we have to find the solution (x0, y0, z0) = (d1, k, p + q − p0 − q0 − 1) of
the polynomial fMSB1 = ex− (N − p0 − q0)y + yz + R.

Let X = Nγ , Y = Nα+δ−1, Z = Nβ , and one can check that they are the
upper bounds of x0, y0, z0. Note that k (renamed as y) is ed−1

φ(N) . As e = Nα,
d ≤ N δ and φ(N) is order of N , ignoring the constant terms, we get the value of
Y , which is the upper bound of y0. Also, the bound Z should be |p+q−p0−q0|,
which is actually less than 2Nβ (however, we ignore the constant term in the
proof as in [10]).

Now let us fix the lattice parameters m, t. Define

W = ||fMSB1(xX, yY, zZ)||∞ and n = (XY )mZm+tW.

In order to work with a polynomial having the constant term 1, we define

f ≡ R−1fMSB1(x, y, z) mod n ≡ 1 + ax + by + cyz.

(During the experiments, as long as gcd(R, n) 6= 1, we keep on increasing n by
1.) Then we use the shifts

gijk = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m; j = 0, . . . , m− i; k = 0, . . . , j;
hijk = xiyjzkf(x, y, z)Xm−iY m−jZm+t−k,

for i = 0, . . . ,m; j = 0, . . . , m− i; k = j + 1, . . . , j + t;
g′ijk = nxiyjzk,

for i = 0, . . . ,m + 1; j = m + 1− i; k = 0, . . . , j;
h′ijk = nxiyjzk,

for i = 0, . . . ,m + 1; j = m + 1− i; k = j + 1, . . . , j + t.

Now we build a lattice L with the basis elements coming from the co-
efficient vectors of gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and
h′ijk(xX, yY, zZ) following the idea of [10]. The vectors are ordered in such
a manner that the matrix corresponding to the lattice L becomes triangular,
and the diagonal entries of g and h are equal to (XY )mZm+t. Then we follow
the similar computation as in [10, Appendix A], taking t = τm. If

(1) X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ ,

we get polynomials f1 and f2 (the first two elements after lattice reduction
using LLL algorithm) that satisfy the Howgrave-Graham bound as described
in Theorem 1.1.
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Now we construct two resultants G1, G2 taking two different pairs from
fMSB1, f1, f2 (in our experiments, mostly, G1 is constructed using fMSB1, f1

and G2 is constructed using fMSB1, f2). Then we construct the resultant of
G1, G2 to get G. The integer root(s) of G provide z0, which in turn gives the
primes. We assume that the resultant computations for multivariate polynomi-
als constructed in our approach yield non-zero polynomials. This is successful
in most of the cases in our experiment. However, as this step involves some
probability of success, we consider the algorithm as probabilistic. As each of
lattice reduction, resultant computation and root finding is polynomial time
algorithm in log2 N , the product N can be factored in probabilistic polynomial
time given the constraints in this theorem.

Here X = Nγ , Y = N δ+α−1, Z = Nβ and W = max{eX, (N − p0 −
q0)Y, Y Z, R} ≥ (N − p0 − q0)Y ≈ NY = Nα+δ. So the Inequality (1) holds if,

X1+3τY 2+3τZ1+3τ+3τ2 ≤ (NY )1+3τ ⇔
Nγ(1+3τ)N (δ+α−1)(2+3τ)Nβ(1+3τ+3τ2) ≤ N (α+δ)(1+3τ) ⇔(2)

3βτ2 + (3β + 3γ − 3)τ + (α + γ + δ + β − 2) ≤ 0.

Putting the optimal value of τ , which is τ = 1−β−γ
2β in Inequality (2) we get

the required condition

γ ≤ (3− β)−
√

4β2 + 12βδ + 12βα− 12β

3
. ¤

When e is O(N), we have e = cN for some constant 0 < c < φ(N)
N as

e < φ(N). Thus, putting α = 1 and ignoring the constant term, we get the
following corollary.

Corollary 2.2. Let d ≤ N δ and consider that d0, p0 are exposed such that
|d − d0| < Nγ and |p − p0| < Nβ. Then one can factor N (in probabilistic
polynomial time) when

γ ≤ 1− β + 2
√

β(β + 3δ)
3

.

One may note that putting β = 1
2 in Corollary 2.2, we get the same bound

γ ≤ 5
6 − 1

3

√
1 + 6δ as in [10, Theorem 1]. As we have the knowledge of a

few MSBs of p, the value of β decreases below 1
2 in our case, increasing the

value of γ. As δ − γ proportion of bits of d needs to be known for the attack,
we require less number of MSBs of d to be exposed than [10]. We present
some numerical values first. Consider 1024 bits N, e, and 359 bits d when
δ = 0.35. Thus, the upper bound of γ using the formula γ ≤ 5

6 − 1
3

√
1 + 6δ

of [10] comes to be 0.24644. Then the requirement of MSBs of d to be known
is (0.35 − 0.24644) × 1024 = 106 bits. If we consider that 0.039 proportion of
MSBs of p (i.e., 0.0195 proportion of log2 N) is known, then β = 0.5−0.0195 =
0.4805. In this case 20 many MSBs of p is required to be guessed. Using our
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Theorem 2.1, the value of γ becomes 0.26813. Thus the requirement of MSBs
of d to be known is (0.35− 0.26813) · 1024 = 84 bits.

One should note that the total requirement of bits to be known in our case
is 84 + 20 = 104, which is less than the requirement of 106 bits in [10]. The
number of MSBs of d to be exposed in [10] is (δ−γ1) log2 N (we denote γ by γ1

here). In our case, the requirement of MSBs in p is (0.5−β) log2 N and that of
d is (δ−γ2) log2 N (we denote γ by γ2 here), and adding them we get the total
requirement of MSBs (considering both p, d) is (0.5− β + δ − γ2) log2 N . One
may check that (δ − γ1) log2 N of [10] is greater than (0.5− β + δ − γ2) log2 N
when β < 1

2 . This theoretically justifies the advantage of our technique.
As we will work with low lattice dimensions, the actual requirement of MSBs

to be known will be higher in experimental results than the numerical values
arrived from the theoretical results. This is explained in detail in Table 1.

Based on Corollary 2.2, we get the following probabilistic polynomial time
algorithm.

Algorithm 1.

Inputs:
N, e = Nα, and Nδ, the upper bound of d.
MSBs of d, p, i.e., d0, p0.
Parameters γ, β

Steps:
1. Construct polynomial fMSB1 = ex− (N − p0 − q0)y + yz + R where

q0 = N
p0

, and R = ed0 − 1.

2. Initialize X = Nγ , Y = Nδ, Z = Nβ .
3. Fix the lattice parameters m, t.
4. Calculate W = ||fMSB1(xX, yY, zZ)||∞ and n = (XY )mZm+tW .
5. Construct f = R−1fMSB1(x, y, z) mod n = 1 + ax + by + cyz.
6. Construct the lattice L from f , i.e., with the coefficients of the shift polynomials

gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and h′ijk(xX, yY, zZ),

where g, h, g′, h′ are constructed from f .
7. Reduce L using LLL algorithm to get the first two elements f1, f2.
8. Calculate the resultant G1 using fMSB1, f1 and the resultant G2 using fMSB1, f2.
9. If both G1, G2 are nonzero

then calculate the resultant G of G1, G2;
else

exit with failure.

10. If G is nonzero and γ ≤ 1− β+2
√

β(β+3δ)

3
then solve G to get the integer root z = (p + q − p0 − q0 − 1);

else
exit with failure.

One may also consider guessing MSBs of p+q rather than p as the polynomial
fMSB1 deals with p + q rather than p and q. Experimental results of [23] show
that around 12 many MSBs of p+q can be estimated correctly for the 1024-bit
N , whereas the estimation gives around 7 many MSBs for p. Consider that b1

many MSBs of p are known (p is estimated by p′) and we estimate q by q′ = N
p′ .

Further, let us assume that the estimation p′ + q′ has b2 many MSBs identical
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with the exact value p + q. Then experimentally we observed that b2 > b1 in
general and for b1 = 7, we get b2 = 12 on an average. This shows that the
effect of guessing the MSBs of p or p + q are same.

2.2. MSBs of d and p known: Method II

We start this section with the following theorem.

Theorem 2.3. Let d ≤ N δ and e = Nα and consider that d0, p0 are exposed
such that |d − d0| < Nγ and |p − p0| < Nβ. Then one can factor N (in
probabilistic polynomial time) when

γ ≤ 1 +
1
3
λ− β − 2

3

√
λ
√

λ + 3β,

where λ = max{γ + α− 1, δ + α− 3
2}.

Proof. Note that the attacker can compute k0 = ed0−1
N . Let k1 = k − k0, the

unknown part of k. It can be shown similar to [2] that |k1| < e
φ(N) (N

γ +

3N δ− 1
2 ). So we get |k1| < 4Nλ, where λ = max{γ + α− 1, δ + α− 3

2}.
Now, ed−1 = k(N +1−p−q) ⇔ e(d0+d1)−1 = (k0+k1)(N−(p+q−1)) ⇔

e(d0 + d1)− 1 = (k0 + k1)(N − p0− q0− (p + q− p0q0− 1)) ⇔ ed1− (N − p0−
q0)k1+k1(p+q−p0−q0−1)+k0(p+q−p0−q0−1)+ed0−1−(N−p0−q0)k0 = 0.
Hence we have to find the solution of the polynomial

fMSB2(x, y, z) = ex− (N − p0 − q0)y + yz + k0z + R,

where R = ed0 − 1 − (N − p0 − q0)k0. That is, the root of fMSB2(x, y, z) is
(x0, y0, z0) = (d1, k1, p + q − p0 − q0 − 1).

Let X = Nγ , Y = Nλ, Z = Nβ , and one can check that they are the upper
bounds of x0, y0, z0 neglecting the small constant multipliers.

Now let us fix the lattice parameters m, t. Define

W = ||fMSB2(xX, yY, zZ)||∞ and n = XmY m+tZmW.

In order to work with a polynomial with constant term 1, we define

f ≡ R−1fMSB2(x, y, z) mod n ≡ 1 + ax + by + cyz + dz.

(During the experiments, as long as gcd(R, n) 6= 1, we keep on increasing n by
1.) Then we use the shifts

gijk = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k

for i = 0, . . . ,m; j = 0, . . . , m− i; k = 0, . . . , m− i;
hijk = xiyjzkf(x, y, z)Xm−iY m+t−jZm−k

for i = 0, . . . ,m; j = m− i + 1, . . . ,m− i + t; k = 0, . . . , m− i;
g′ijk = nxiyjzk

for i = 0, . . . ,m + 1; j = 0, . . . ,m + t + 1− i; k = m + 1− i;
h′ijk = nxiyjzk

for i = 0, . . . ,m; j = m + t + 1− i; k = 0, . . . , m− i.
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Now we build a lattice L with the basis elements coming from the co-
efficient vectors of gijk(xX, yY, zZ), hijk(xX, yY, zZ), g′ijk(xX, yY, zZ) and
h′ijk(xX, yY, zZ) following the idea of [10]. The vectors are ordered in such
a manner that the matrix corresponding to the lattice L becomes triangular,
and the diagonal entries of g and h are equal to XmY m+tZm. We give an
example of the lattice below with m = 1 and t = 0.

1 z y yz x z2 yz2 y2z2 xz xyz x2 y2 y2z xy
XY Z dXY Z2 bXY 2Z cXY 2Z2 aX2Y Z 0 0 0 0 0 0 0 0 0

0 XY Z 0 bXY 2Z 0 dXY Z2 cXY 2Z2 0 aX2Y Z 0 0 0 0 0
0 0 XY Z dXY Z2 0 0 0 0 0 0 0 bXY 2Z cXY 2Z2 aX2Y Z
0 0 0 XY Z 0 0 dXY Z2 cXY 2Z2 0 aX2Y Z 0 0 bXY 2Z 0
0 0 0 0 XY Z 0 0 0 dXY Z2 cXY 2Z2 aX2Y Z 0 0 bXY 2Z
0 0 0 0 0 nZ2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 nY Z2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 nY 2Z2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 nXZ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 nXY Z 0 0 0 0
0 0 0 0 0 0 0 0 0 0 nX2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 nY 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 nY 2Z 0
0 0 0 0 0 0 0 0 0 0 0 0 0 nXY

Now we follow the similar computation as in [10, Appendix B], taking t =
τm. If

(3) X2+3τY 3+6τ+3τ2
Z3+3τ ≤ W 2+3τ ,

we get polynomials f1 and f2 (the first two elements after lattice reduction
using LLL algorithm) that satisfy the Howgrave-Graham bound as described
in Theorem 1.1.

Similar to the proof of Theorem 2.1, we construct two resultants G1, G2

taking two different pairs from fMSB2, f1, f2. Then we construct the resultant
of G1, G2 to get G. The integer root(s) of G provide z0, which in turn gives
the prime. The complete operation works in probabilistic poly(log2 N) time.

Here X = Nγ , Y = Nλ, Z = Nβ and

W = max{eX, (N − p0 − q0)Y, Y Z, k0Z, R} ≥ (N − p0 − q0)Y ≈ NY = N1+λ.

So the Inequality (3) holds if,

X2+3τY 3+6τ+3τ2
Z3+3τ ≤ (NY )2+3τ ⇔

Nγ(2+3τ)Nλ(3+6τ+3τ2)Nβ(3+3τ) ≤ N (1+λ)(2+3τ) ⇔(4)
3λτ2 + (3β + 3γ + 3λ− 3)τ + (2γ + λ + 3β − 2) ≤ 0.

Putting the optimal value of τ , which is τ = 1−β−γ−λ
2λ , in Inequality (4) we get

the required condition γ ≤ (6+2λ−6β)−
√

16λ2+48λβ

6 . ¤

When e is O(N), we have e = cN for some constant 0 < c < φ(N)
N as

e < φ(N). Thus, putting α = 1 and ignoring the constant term, we get the
following corollary.
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Corollary 2.4. Let d ≤ N δ and consider that d0, p0 are exposed such that
|d − d0| < Nγ and |p − p0| < Nβ. Then one can factor N (in probabilistic
polynomial time) when

γ ≤ 1 +
1
3
λ− β − 2

3

√
λ
√

λ + 3β,

where λ = max{γ, δ − 1
2}.

Putting β = 1
2 in Corollary 2.4, we get the same bound as in [10, Theorem 1].

As we have knowledge of a few MSBs of p, the value of β decreases below 1
2 in

our case, increasing the value of γ. As δ − γ proportion of bits of d needs to
be known for the attack, we require less number of MSBs of d to be exposed
than [10].

Similar to Algorithm 1 corresponding to Corollary 2.2, one can devise a
probabilistic polynomial time algorithm following Corollary 2.4.

2.3. Comparison of Methods I and II

In Theorem 2.1, we have

γ ≤ (3− β)−
√

4β2 + 12βδ + 12βα− 12β

3
,

and in Theorem 2.3, we get

γ ≤ 1 +
1
3
λ− β − 2

3

√
λ
√

λ + 3β,

where λ = max{γ + α − 1, δ + α − 3
2}. Now λ = γ + α − 1 implies that

γ ≤ 4
3 α+β2−2αβ− 1

3 α2

4
3 α

is valid for δ ≤ 1
2 +

4
3 α+β2−2αβ− 1

3 α2

4
3 α

. If λ = δ + α− 3
2 , we

get that

γ ≤ 1
3
α +

1
2
− β +

δ

3
− 2

3

√
α2 + 2αδ + δ2 + 3αβ + 3δβ − 3α− 3δ − 9β

2
+

9
4

is valid for δ ≥ 1
2 +

4
3 α+β2−2αβ− 1

3 α2

4
3 α

. We need (δ − γ) log2 N many MSBs of d

to factor N and thus when the upper bound of γ is larger, one gets the better
result.

Now,

4
3α + β2 − 2αβ − 1

3α2

4
3α

≤ (3− β)−
√

4β2 + 12βδ + 12βα− 12β

3

if and only if

δ ≤ 1
12β

(α4 − 12α3β +
26
3

α2β2 − 28αβ3 + 9β4 +
64
3

α2β)
16
9

α2.
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Since
1

12β
(α4 − 12α3β +

26
3

α2β2 − 28αβ3 + 9β4 +
64
3

α2β)
16
9

α2

≤ 1
2

+
4
3α + β2 − 2αβ − 1

3α2

4
3α

for our α, β. Hence, we can conclude that Method I is more effective when

δ ≤ 1
12β

(α4 − 12α3β +
26
3

α2β2 − 28αβ3 + 9β4 +
64
3

α2β)
16
9

α2,

but for higher values of δ, Method II will perform better.

3. LSBs of d and MSBs of p known

In [10, Theorem 3], the cryptanalysis of RSA has been studied when some
LSBs of d are exposed. We here extend the idea with the additional idea that
a few MSBs of p are also known. This gives the following theorem. We present
the proof briefly as the technique is similar to Theorem 2.1.

Theorem 3.1. Let d < N δ and e = Nα. Given (δ − γ) log2 N many LSBs
of d and p0 when |p− p0| < Nβ, N can be factored in probabilistic polynomial
time when

γ ≤ (3− β)−
√

4β2 + 12βδ + 12βα− 12β

3
.

Proof. Consider that d0 is the integer corresponding to the exposed LSBs of d.
Thus, d0 ≡ d mod M for some M , i.e., d = d0 +d1M for some d1. Now we have
ed−1 = k(N−(p+q−1)), which can be written as e(d0+d1M)−1 = k(N−p0−
q0−(p+q−p0−q0−1)) ⇔ eMd1−(N−p0−q0)k+k(p+q−p0−q0)+ed0−1 = 0.
Hence we have to find the solution of the polynomial

fLSB(x, y, z) = eMx− (N − p0 − q0)y + yz + R,

where R = ed0 − 1. So, the root of fLSB(x, y, z) is (x0, y0, z0) = (d1, k, p + q −
p0− q0− 1). This polynomial is same as the polynomial fMSB1 in the proof of
Theorem 2.1. Thus, using similar analysis as in the proof of Theorem 2.1, we
get the constraint as

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ .

Putting X = Nγ , Y = Nα+δ−1, Z = Nβ we get γ≤ (3−β)−
√

4β2+12βδ+12βα−12β

3 .
¤

When e is O(N), we have e = cN for some constant 0 < c < φ(N)
N as

e < φ(N). Thus, putting α = 1 and ignoring the constant term, we get the
following corollary.
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Corollary 3.2. Let d ≤ N δ and consider that d0, p0 are exposed such that
|d − d0| < Nγ and |p − p0| < Nβ. Then one can factor N (in probabilistic
polynomial time) when

γ ≤ 1− β + 2
√

β(β + 3δ)
3

.

Putting β = 1
2 in Corollary 3.2, we get the same bound as in [10, Theorem 3].

As we have the knowledge of a few MSBs of p, the value of β decreases below
1
2 in our case, increasing the value of γ. As δ − γ proportion of bits of d needs
to be known for the attack, we require less number of LSBs of d to be exposed
than [10].

Similar to Algorithm 1 corresponding to Corollary 2.2, one can devise a
probabilistic polynomial time algorithm following Corollary 3.2.

In the next section we present experimental results with all the relevant data
that highlights the improvement achieved by our technique.

4. Experimental results

As we will work with low lattice dimensions, the actual requirement of MSBs
to be known will be higher in experimental results than the numerical values
arrived from the theoretical results. In all the examples in this section, we
consider e is O(N), i.e., α = 1.

Let us first present an example corresponding to Corollary 2.2.

Example 1. We consider 1024 bits N , where p, q are as follows:
1250761923527510411315070094600953191518914882053874630138572721
3379453573344337203378689178469455622775349446752309018799383711
357854132188009573705320799, and
1107912156937047618049134072984642192716736685911164684230293246
8333166003839167447110681747873414798648020740448967643538057644
289251761907013886499799383.

The public encryption exponent e and the private decryption exponent d
(> N0.3) are as follows:
4111419531482703302213152215249820199365297610317452985558572767
9733063464769115345985695600033379618093485626368069580331701437
1713991035411585833035097935179306334968838354246222965614977094
4387175979120739327961832949244693262147095449404161561854523749
0828036465397182668742616838575576909861473509095701, and
9112600460700982254642303117750528735697464727643378038053035839
34395253129269343722635765941.

First we work with the case m = t = 1, i.e., getting a lattice with dimen-
sion w = 16 which corresponds to a 16 × 16 matrix (one may refer to [10,
Section 4.1.1, Page 378] for the exact matrix). Factoring N requires the knowl-
edge of 112 many MSBs of d using the method of [10], whereas, our technique
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requires 80 many MSBs of d and 21 many MSBs of p. Both the techniques
require around 1.5 seconds on our platform. Following the idea of [23], around
7 MSBs of p may be known in polynomial time and hence we need 221−7 many
guesses for p, which requires less than 7 hours in our experimental set-up. The
existing works on partial key exposure attacks will not work with the knowledge
of only 80 bits of MSBs that we achieve here.

Considering a higher lattice dimension, m = t = 2, i.e., w = 40, factoring
N requires knowledge of 110 many MSBs of d using the idea of [10]. This
requires 53.03 seconds. According to experimental results in [10, Figure 5],
this should require around 93 MSBs of d. In our case, we require only 53 MSBs
of d and 21 MSBs of p to factor N that requires 46.25 seconds; thus the total
requirement is 53 + 21 = 74 many bits. Considering that 7 many MSBs of p
may be known using the idea of [23], the overall attack will take a day in a
cluster of 9 machines.

In Table 1, we consider different 1024 bits N and present the results of 10
runs of Algorithm 1 for two cases, one when d > N0.3 (308-bit d) and the
other when d > N0.35 (359-bit d). Let MSBd,MSBp be the number of MSBs
exposed in d, p respectively and bd, bN be the number of bits in d,N respectively.
For the experiments, we have taken X = 2bd−MSBd−τ + 3, Y = 2bd−τ + 3 and
Z = 2

bN
2 −1−MSBp−τ + 3, where τ is assigned to either 0 or 1.

Table 1. Our results for 1024 bits N with lattice dimension
m = 1, t = 1, i.e., w = 16.

308-bit d and # MSBs of d revealed in our case is 80 bits

# MSBs of d [10] 112 112 107 111 122 114 115 114 113 113

# MSBs of p (our) 21 22 26 27 33 20 23 27 24 17

359-bit d and # MSBs of d revealed in our case is 150 bits

# MSBs of d [10] 213 213 224 221 210 213 213 209 214 209

# MSBs of p (our) 55 58 64 63 56 58 58 60 57 64

First, we consider that only 80 MSBs of d will be leaked and studied the
requirement of the MSBs of p for the attack. In each case, the algorithm of [10]
has also been executed and the requirement of the minimum number of MSBs
for d is presented. Next, we consider that 150 MSBs of d will be exposed for
our attack. The results of Table 1 clearly identifies the improvement through
our approach over the idea of [10].

Now we present an example corresponding to Corollary 2.4.

Example 2. We consider 1024 bits N , where p, q are as follows:
1290095499900537520738592018141635641890236846803915011513383767
0209874471258016282936211171026387975852074650577973638061666975
875608252293476946503643153 and
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1000185093298659356464364006344214401803451809699327990511143534
6245976401541951947605527101001219415058383887802017319402268231
678260119183689118701599291.

The public encryption exponent e and the private decryption exponent d
(> N0.635) are as follows:
2646427944963705290832001040264321064518330644014272781901176692
1275747995184991062700504366357036237348582610659452376574441390
6848604272574339602928280657237457953663021451655943042945578450
1024196163634859652923753819307713107254668118838014524484407975
5319955227511927745024777291417353383785591531787203 and
7161023303467486069671927956706449459095092348532240745792204228
8486408905849760078536669744740852203765618495942126675467606851
0587072867279932328546936990058795097878469904141410558285066558
9707.

First we work with the case m = t = 1, i.e., lattice dimension w = 20.
Factoring N requires the knowledge of 572 many MSBs of d using the method
of [10], whereas, our technique requires 517 many MSBs of d and 31 many
MSBs of p. Both the techniques require around 7.5 seconds on our platform.
Following the idea of [23], around 7 MSBs of p may be known in polynomial
time and hence we need 231−7 many guesses for p, which requires around a
day in a cluster of 210 machines. The existing works on partial key exposure
attacks will not work with the knowledge of only 517 bits of MSBs that we
achieve here. Further the total requirement of unknown bits in our case is
517 + 31 = 548 which is less than 572.

With higher lattice dimension, m = t = 2, i.e., w = 50, factoring N requires
527 many MSBs of d using the idea of [10]. This takes 859.64 seconds. In our
case, it is enough to know 494 MSBs of d with 31 MSBs of p. The time required
is 887.22 seconds.

We now present the experimental details of 10 runs with 10 different 1024
bits N in Table 2. We consider that only 517 many MSBs of d will be leaked
and then study the requirement of the MSBs of p for our attack. In each
case, the algorithm of [10] has also been executed and the requirement of the
minimum number of MSBs for d is presented. The results of Table 2 clearly
identifies the improvement through our approach over the idea of [10].

Table 2. Our results for 1024 bits N with lattice dimension
m = 1, t = 1, i.e., w = 20.

651-bit d and # MSBs of d revealed in our case is 517 bits

# MSBs of d [10] 572 573 572 573 573 571 570 569 578 575

# MSBs of p (our) 31 34 35 35 35 32 38 33 33 35

Now we present an example corresponding to the Corollary 3.2.
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Example 3. We consider 1024 bits N , where p, q are as follows:
1203455554520496513092964312290781154515021150114637321974273660
4036604551051432401698923375314223219352776116668992562953977601
494812370217390511745064609 and
1170162232428076043275963242092394902992044041699922765182745491
1687794587069471939459107891700953238765852825589195765523177221
061363437357581056385345193.

The public encryption exponent e and the private decryption exponent d
(> N0.30) are as follows:
9262840848832818099725923231290910682284377479861057935159238392
2152908007127148216664565531845550317794995167278441598392908149
4300715331067535008047871523708599866902351068839273181735190226
3333864097908955752096238221073594906199364950641439860998004693
1029715538636463760752793958294478936586780899434369 and
5009727027589508051673544277436160282160739874039432019366401679
69825484681181534595620036481.

First we work with the case m = t = 1, i.e., lattice dimension w = 16.
Factoring N requires the knowledge of 115 many LSBs of d using the method
of [10], whereas, our technique requires 80 many LSBs of d and 23 many MSBs
of p. Both the techniques requires little less than 1.5 seconds on our platform.
Following the idea of [23], around 7 MSBs of p may be known in polynomial
time and hence we need 223−7 many guesses for p, which requires a day in our
experimental set-up.

When we work with higher lattice dimension m = t = 2, i.e., w = 40,
factoring N requires 112 LSBs of d using the idea of [10]. It takes 46.39 seconds.
In our case, we need 48 LSBs of d with 25 MSBs of p (requires 38.21 seconds)
or 62 LSBs of d with 23 MSBs of p (requires 39.41 seconds).

We now present the experimental details of 10 runs in Table 3 considering
10 different 1024 bits N . We consider that only 80 many LSBs of d will be
leaked and then study the requirement of the MSBs of p for the attack. In each
case, the algorithm of [10] has also been executed and the requirement of the
minimum number of LSBs for [10] is presented. The results of Table 3 clearly
identifies the improvement through our approach over the idea of [10].

Table 3. Our results for 1024 bits N with lattice dimension
m = 1, t = 1, i.e., w = 16.

308-bit d and # LSBs of d revealed in our case is 80 bits

# LSBs of d [10] 115 107 105 108 109 109 114 116 112 108

# MSBs of p (our) 23 24 23 29 24 27 30 27 20 19
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5. Key exposure attacks on RSA variant proposed in [24]

In [24], Sun and Yang proposed a variant of RSA where the public encryption
exponent e and the private decryption exponent d are such that log2 e+log2 d ≈
log2 N + lk, where lk is a positive integer. The main idea was to keep the bit
size d as well as e quite less and the value of lk is related to the security of
this variant of RSA. The examples in [24] used lk = 112. Below we present the
result that gives a view of key exposure attack in such a scenario.

Theorem 5.1. Let d = N δ and e = Nα. Consider that d0, p0 are exposed such
that |d − d0| < Nγ and |p − p0| < Nβ. Further, e > p + q. Let γ + α − 1 ≈ 0
and δ + α − 3

2 ≈ 0 and λ = max{γ + α − 1, δ + α − 3
2}. If Nλ is bounded by

some value V , then one can factor N in O(V ) time.

Proof. First compute k0 = ed0−1
N . Let k1 = k − k0, the unknown part of k.

It can be shown similar to [2] that |k1| < e
φ(N) (N

γ + 3N δ− 1
2 ). So we get

|k1| < 4Nλ, where λ = max{γ + α− 1, δ + α− 3
2}. Given the conditions in the

statement of this theorem, λ ≈ 0 and Nλ is bounded by V . Thus k1 becomes
small and one can get k by attempting O(V ) many guesses around k0 as k ≈ k0.

Since, ed = 1 + k(N + 1− p− q), we get p + q ≡ N + 1 + k−1(mode). Since
e > p + q, we get the exact value of p + q from the above relation, when k is
known. From p + q one can factor N easily. ¤

For the examples presented in [24], we note that δ + α − 3
2 < 0. In such a

case, we get the following corollary from the above theorem.

Corollary 5.2. Let δ + α − 3
2 ≤ 0 and kb be the number of bits in k. If kb

many MSBs of d are exposed, then one can factor N in O(V ) time.

Proof. Here kb is the number of bits in k. Also assume δ + α − 3
2 ≤ 0. From

ed = 1 + k(N + 1− p− q), putting e = Nα and d = N δ, we get k ≈ Nα+δ−1.
So we can write kb ≈ (α + δ− 1) log2 N . Consider that kb many MSBs of d are
exposed. Then one can find an integer d0 such that kb many MSBs of d and d0

are same; rest of the bits of d0 are set to 0. Then |d−d0| ≈ Nδ−(α+δ−1) = N1−α.
Thus, in this case, γ ≈ 1− α. Given that

• δ + α− 3
2 < 0 and

• γ + α− 1 ≈ 0,
the condition that λ ≈ 0 is satisfied and k may be obtained correctly in O(V )
time if Nλ is bounded by V . Thus k can be found from exposure of kb many
MSBs of d. ¤

In the examples of [24], we have δ + α− 3
2 < 0 and the number of bits of k

is around 112. If 112 many MSBs of d are known in the examples of [24] then
γ + α− 1 ≈ 0 and for these examples, Nλ is bounded by a small value. Hence,
by Theorem 5.1, N can be factored with a few attempts, when 112 MSBs of d
are exposed.
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Let us take one example from [24] and show how the idea of Theorem 5.1
can be exploited in partial key exposure attack.

Example 4. Consider 1023 bit N , where p, q are as follows:
6946298023152151234119921480680832436497549904799107175745073193
2953667603720297554494602800082410634381496545279550772931220456
93872832568919494367179683 and
9298010378653774986152898023835574635638138952988096972526467301
0678022286958100579620668424306566650265798840113362467458233516
94963014116521406367112191.

The 624 bit public encryption exponent e and the 512 bits private decryption
exponent d are as follows:
5721061301794710182390683815029842441460362724907879560963276986
6975610862438238974819614795642559017408449146217351125265929125
263104206514497509225057697318033686454731554821184043087141 and
7602283866781159820947913228610686097130386000077350755390256771
8951868510634438045237523250901687897725513305310999556261199816
64756390141139678043720501.

One can check that k is as follows:
6734064074495379225554574165269558.

To the attacker, only e, N and 112 many MSBs of d are known. In this case,
d0 is as follows:
7602283866781159820947913228610684710235179445495436137087564067
1279208854768908821684918866304615648410118177413308311297969108
96835191886854000585211904.

We get k0 = (ed0−1)
N as follows:

6734064074495379225554574165269556.
For each integer k′, relatively prime to e around k0, we calculate k′−1 mod

(e). Then we test whether p + q ≡ N + 1 + k′−1(mode) gives the factorization
of N or not. In this manner we get the correct k. Then the value of k−1 mod e
is as follows:
8024132632238591697576274438536382308684483967207580783523882571
5965934076104009545478333958621728900573683350789851512446284445
83674593058099194589485024742085444514803006551931927028037, which in
turn gives p + q.

Example 4 demonstrates that 112 many MSBs of d are required to mount
the key exposure attack. Now we study the performance of the idea presented
in Section 2. For experimentation we use low lattice dimensions, and hence the
numerical values arrived from the theoretical results may not be reached.

First we concentrate on Method I (based on the idea of Theorem 2.1).

• If we consider that 20 many MSBs of p are known then β = 0.48093.
Here we have γ = 0.42299 and we need to know (δ − γ) log2 N many
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MSBs of d which is 79 in this case. Thus the total requirement of bits
to be known is 20 + 79 = 99.

• We perform an experiment corresponding to Method I, with parameters
m = 2, t = 2, i.e., lattice dimension ω = 40. In this case we need 95
many MSBs of d and 20 many MSBs of p and the time required is 22
seconds. Thus the total requirement of bits to be known is 20 + 95 =
115.

Our results in Section 2 points out that lower values of e makes this RSA
variant [24] more vulnerable. With the same primes presented in Example 4,
we take the value of d two more than what presented in Example 4 and the
corresponding e becomes a 1023 bit number, which is O(N). With this new
setup, the results using Method I are as follows.

• If we consider that 20 many MSBs of p are known then β = 0.48093.
Here we have γ = 0.18953 and we need to know (δ − γ) log2 N many
MSBs of d which is 318 in this case. Thus the total requirement of bits
to be known is 20 + 318 = 338.

• We perform an experiment corresponding to Method I, with parameters
m = 2, t = 2, i.e., lattice dimension ω = 40. In this case we need
388 many MSBs of d and 20 many MSBs of p and the time required
is 37.5 seconds. Thus the total requirement of bits to be known is
20 + 388 = 408.

Now we present examples with Method II (based on the idea of Theorem 2.3).
First we consider the p, q, e, d as in Example 4.

• If we consider that 20 many MSBs of p are known then β = 0.48093.
Here we have γ = 0.41050 and we need to know (δ − γ) log2 N many
MSBs of d which is 92 in this case. Thus the total requirement of bits
to be known is 20 + 92 = 112.

• We perform an experiment corresponding to Method II, with parame-
ters m = 2, t = 2, i.e., lattice dimension ω = 50. In this case we need
99 many MSBs of d and 20 many MSBs of p and the time required
is 553.8 seconds. Thus the total requirement of bits to be known is
20 + 99 = 119.

• It is clear that Method I performs better than Method II when we
consider the RSA variant of [24].

With the same primes presented in Example 4, we take the value of d two
more than what presented in Example 4. With this new setup, the results using
Method II are as follows.

• If we consider that 20 many MSBs of p are known then β = 0.48093.
Here we have γ = 0.20207 and we need to know (δ − γ) log2 N many
MSBs of d which is 305 in this case. Thus the total requirement of bits
to be known is 20 + 305 = 325.
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• We perform an experiment corresponding to Method II, with parame-
ters m = 2, t = 2, i.e., lattice dimension ω = 50. In this case we need
363 many MSBs of d and 20 many MSBs of p and the time required
is 1217.9 seconds. Thus the total requirement of bits to be known is
20 + 363 = 383.

• One may note that Method II performs better than Method I when we
consider RSA with e of the order of N .

Our study shows that much higher key exposure is required when e is O(N)
than in case of the RSA variant [24], when e is smaller.

6. Conclusion

In this paper we have studied cryptanalysis of RSA when either certain
amount of MSBs or certain amount of LSBs of d are exposed. Our additional
idea is to guess a few MSBs of the secret prime p. With this additional infor-
mation, we find that our technique is more efficient than that of [10] (where
no guess on the bits of p is attempted) in terms of the amount of bits of d to
be exposed. Our technique is also better if one considers total number of bits
to be known from d, p together than that of d only in [10]. Our theoretical
results are implemented and we present experimental evidences of 1024 bits N ,
that can be factored with the exposure of considerably less amount of bits in
d than [10] with a guess of a few MSBs in p that can be searched exhaustively
(say around 20 to 30 bits). We also study an RSA variant proposed in [24] and
analyze the effect of partial key exposure attack on this scheme.
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