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LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON
A LIE GROUP OF CONSTANT NEGATIVE

SECTIONAL CURVATURE

Seunghun Yi

Abstract. We find all left-invariant minimal unit vector fields and stro-
ngly normal unit vector fields on a Lie group which is isometric to the
hyperbolic space.

1. Introduction

A smooth unit vector field on a Riemannian manifold (M, g) is a cross section
of its unit sphere bundle T 1(M) and hence can be viewed as a submanifold of
T 1(M). If the manifold M is compact and T 1(M) is equipped with a natural
Riemannian metric gs called the Sasaki metric, then the volume of the unit
vector field is defined as the volume of this submanifold.

For the problem of determining unit vector fields which have minimal vol-
ume, Gluck and Ziller showed that the unit vector fields of minimal volume on
S3 are precisely the Hopf vector fields and no others ([7]). But in the higher
dimensional spheres, S2n+1, k ≥ 2, this is not the case ([4], [8], [10]).

The problem of finding unit vector fields of the minimum volume seems to
be very difficult, so it is natural to consider the problem of finding the critical
values or critical points of the volume functional.

Gil-Medriano and Llinares-Fuster proved that a unit vector field is a critical
point of the volume functional if and only if the corresponding immersion in
(T 1M, gs) is minimal ([3]). So we call such unit vector fields minimal even
though the manifold is not compact.

Many examples of Riemannian manifolds and Lie groups equipped with left-
invariant minimal unit vector fields are provided ([1], [2], [3], [5], [6], [12], [13]).
But there are very few manifolds on which we know all the minimal unit vector
fields. Even for almost examples of the Lie groups, not all the left-invariant
minimal unit vector fields are provided but only some of them are found to be
minimal.
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The aim of this paper is to provide a Lie group with all the left-invariant
minimal unit vector fields as follows. For an integer n > 1, a Lie group Gn is
defined as follows.

Gn :=
{(

1 0
v sIn−1

)
∈ GL(n,R) | v ∈ Rn−1, s > 0

}
,

where v ∈ Rn−1 and In−1 is the (n − 1) × (n − 1) identity matrix. Then the
Lie algebra gn of Gn consists of the n× n matrices of the form(

0 0
v sIn−1

)
, v ∈ Rn−1, s ∈ R.

Let {e1, e2, . . . , en−1} be the usual orthonormal basis for Rn−1. Put

Ei =
(

0 0
ei 0

)
, i < n, En =

(
0 0
0 In−1

)
.

Then the set {E1, E2, . . . , En−1, En} is an orthonormal bases for gn.
The set of all left-invariant minimal unit vector fields on the Lie group Gn

is as follows which is the main result of this paper.

Theorem 1.1. For the Lie group G2 every left-invariant unit vector field is
minimal. For the Lie group Gn, n > 2, the set of left-invariant minimal unit
vector fields is {±En} ∪ (S ∩ E⊥

n ), where S is the unit sphere of gn.

In Section 2 we give some basic notions and facts. In Section 3 we prove
the main theorem and in Section 4 we find the set of all strongly normal unit
vector fields on the Lie group Gn.

The author would like to express his deep gratitude to K. B. Lee for many
valuable discussions and to the anonymous referee for helpful comments.

2. Minimal unit vector fields

Let (M, g) be a smooth Riemannian manifold, ∇ be the Levi-Civita connec-
tion on (M, g) and R be the associated Riemannian curvature tensor with the
sign convention RXY = ∇[X,Y ] − [∇X ,∇Y ].

We assume that the set χ1(M) of unit vector fields on M is non-empty. For
V ∈ χ1(M), let LV be a tensor field defined by

LV := I + (∇V )∗∇V,

where I is the identity map and (∇V )∗ is the adjoint. Then LV is positive
definite and symmetric. Put f(V ) = (det LV )

1
2 . For a closed manifold M , we

define the volume functional F : χ1(M) −→ R by

F (V ) :=
∫

M

f(V )dv,

where dv is the volume form on (M, g).
Now let KV be a (1, 1)-tensor field define by

KV = f(V ) · L−1
V ◦ (∇V )∗
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and a 1-form ωV associated to V by

ωV (X) = tr(Z 7−→ ∇ZKV )(X).

For an orthonormal basis {E1, E2, . . . , En} of the tangent space, ωV (X) is
given as follows.

ωV (X) =
n∑

i=1

g((∇EiKV )(X), Ei).

In [3] it is shown that a unit vector field V is a minimal immersion if and
only if the 1-form ωV annihilates the distribution HV consisting of tangent
vectors orthogonal to V . Moreover it is shown that V is a critical point of the
volume functional if and only if the map V : M −→ (T 1M, gs) is a minimal
immersion, where (T 1M, gs) is the unit tangent bundle T 1M equipped with
the Sasaki metric gs. For this reason we define minimal unit vector fields on a
manifold which is not necessarily compact as follows.

Definition 2.1. A unit vector field V on a Riemannian manifold (M, g) is
called minimal if ωV (X) = 0 for all X ∈ HV .

From now on we consider left-invariant unit vector fields on Lie groups.
Let G be an n-dimensional connected Lie group equipped with a left-invariant
metric and g be its Lie algebra. Let S be the unit sphere of g with respect to
the inner product 〈, 〉 which is determined by the left-invariant metric on G.
Since V ∈ S,∇V,LV ,KV and ωV are invariant by left translation, the function
f can be considered as a function on S.

The distribution HV is invariant by left translation and can be identified
with the orthogonal complement V ⊥ of V in g and thus V ⊥ may be naturally
identified with the tangent space TV S of the unit sphere S at V . Thus a
left-invariant unit vector field V is minimal if and only if the 1-form ωV on g
vanishes on V ⊥ ∼= TV S([13]).

Proposition 2.1 ([13], Proposition 2.1). For X ∈ TV S we have

ωV (X) = −dfV (X)− tr adKV X

and V is minimal if and only if

dfV (X) = −tr adKV X

for all X ∈ TV S.

Thus on a unimodular Lie group G, i.e., tr adX = 0, for all X ∈ g, a left-
invariant unit vector field V is minimal if and only if V is a critical point of
the function f on S.

For a non-unimodular Lie group G with a left-invariant metric, we denote
by U its unimodular kernel, i.e.,

U = {X ∈ g | tr adX = 0}.
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Then U is an ideal of codimension 1 since tr adX is a linear functional.
For a unit vector H which is orthogonal to U , the linear transformation adH

restricted to U is a derivation of U . So we have the following.

Proposition 2.2 ([13], Proposition 2.5). Let U be the unimodular kernel of a
non-unimodular Lie group such that adH |U is a symmetric endomorphism of U
with respect to 〈, 〉. Then a left-invariant unit vector field V is minimal if and
only if it is a critical point of the function f on S.

We shall use this proposition 2.2 to find all the left-invariant minimal unit
vector fields on the Lie group Gn which is isometric to the hyperbolic space
Hn.

3. Proof of the main theorem

For an integer n > 1, define a Lie group Gn as follows.

Gn :=
{(

1 0
v sIn−1

)
∈ GL(n,R) | v ∈ Rn−1, s > 0

}
,

where v ∈ Rn−1 and In−1 is the (n − 1) × (n − 1) identity matrix. Then the
Lie algebra gn of Gn consists of the n× n matrices of the form(

0 0
v sIn−1

)
, v ∈ Rn−1, s ∈ R.

Let {e1, e2, . . . , en−1} be the usual orthonormal basis for Rn−1. Put

Ei =
(

0 0
ei 0

)
, i < n, En =

(
0 0
0 In−1

)
.

Then we have [Ei, Ej ] = 0 for 1 ≤ i, j < n, and [En, Ek] = Ek for 1 ≤ k ≤ n.
Let Gn be equipped with a left-invariant metric such that {E1, E2, . . . , En}

is an orthonormal basis for gn.
Let ∇ be the Levi-Civita connection of Gn. Then for X, Y, Z ∈ g it satisfies

the following identity([9]).

(1) 〈∇XY, Z〉 =
1
2
{〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉}.

For 1 ≤ i, j < n, 1 ≤ k ≤ n, it is easy to show that

(2) ∇EiEj = δijEn, ∇EiEn = −Ei, ∇EnEk = 0.

Thus KEi∧Ej = 〈R(Ei, Ej)Ei, Ej〉 = −1 and the Lie group (Gn, 〈, 〉) has con-
stant negative sectional curvature −1. In fact it is simply connected and
complete. Thus the Lie group (Gn, 〈, 〉) is isometric to the hyperbolic space
Hn([11]).

Proof of the Theorem 1.1. For X =
∑n

i=1 aiEi, we have

tradX =
n∑

j=1

〈adXEj , Ej〉 = nan.
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So the unimodular kernel U is the set {X ∈ g |X =
∑n−1

i=1 aiEi} and a unit
vector orthogonal to U is En.

And for an element X ∈ U we have adH(X) = X and thus adH |U = Id|U .
Therefore adH |U is a symmetric endomorphism of U with respect to 〈, 〉. So by
the Proposition 2.2, a left-invariant unit vector field V is minimal if and only
if V is a critical point of f on S.

Let W =
∑n−1

i=1 ziEi with
∑n−1

i=1 z2
i = 1 and V = xEn+yW with x2+y2 = 1.

Then for j < n, ∇Ej
V = yzjEn − xEj and ∇En

V = 0. So we have

∇V =
n−1∑

i=1

(yzj ⊗ αj − xEj ⊗ αj),

where {α1, α2, . . . , αn} is the dual coframe field of {E1, E2, . . . , En}. The ma-
trix form of ∇V is as follows.

∇V =




−x 0 · · · 0 0
0 −x · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · −x 0

yz1 yz2 · · · yzn−1 0




.

So we have

f(V ) =
√

det(I + (∇V )∗∇V ) =
√

2(1 + x2)
n−2

2 .

If n = 2, the function f becomes a constant function and thus every left-
invariant unit vector field is minimal.

Assume that n > 2 and let

f(x, y, z1, . . . , zn−1) = (1 + x2)r,

g1(x, y, z1, . . . , zn−1) = x2 + y2 − 1 = 0,

g2(x, y, z1, . . . , zn−1) = z2
1 + · · ·+ z2

n−1 − 1 = 0,

where r = n−2
2 .

By the Lagrange multiplier method, we have to solve the following simulta-
neous equation. 



∇f = λ∇g1 + µ∇g2

g1 = 0
g2 = 0.

Since

∇f = (2rx(1 + x2)r−1, 0, . . . , 0),

∇g1 = (2x, 2y, 0, . . . , 0),

∇g2 = (0, 0, 2z1, . . . , 2zn−1),

the above equation becomes as follows:

(2rx(1 + x2)r−1, 0, . . . , 0) = (2λx, 2λy, 2µz1, . . . , 2µzn−1).
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So we have the following:

2λx = 2rx(1 + x2)r−1,(3)

2λy = 0,(4)

2µzi = 0, i = 1, . . . , n− 1,(5)

x2 + y2 = 1,(6)

z2
1 + · · ·+ z2

n−1 = 1.(7)

In the equation (5), if µ 6= 0, then we have zi = 0, i = 1, . . . , n − 1, and it
contradicts to the equation (7). So we have µ = 0,

In (4), we have λ = 0 or y = 0.
(i) If λ = 0, then x = 0 and thus y = ±1.
(ii) If λ 6= 0, then y = 0 and thus x = ±1, λ = 2r.

Therefore the set of critical points of f are as follows.

{(±1, 0, z1, . . . , zn−1), (0,±1, z1, . . . , zn−1)},

where z1, . . . , zn−1 are arbitrary real numbers which satisfies the equation (5).
This completes the proof. ¤

4. Strongly normal unit vectors

A unit vector field V on a Riemannian manifold (M, g) is called normal if
RXY preserves HV for all X,Y ∈ HV , i.e., g(RXY Z, V ) = 0 for all X, Y, Z ∈
HV . And V ∈ χ1(M, g) is called strongly normal if g((∇XAV )Y,Z) = 0 for
all X, Y, Z ∈ HV . Here, AV = −∇V . A vector field V is called killing if AV

is skew-symmetric. It is easy to see that strongly normal unit vector field is
normal and a unit Killing vector field is strongly normal if and only if normal.

The set of all strongly normal unit vector fields on Gn is given as follows.

Theorem 4.1. For n ≥ 2, the set of all strongly normal unit vector fields on
the Lie group Gn is {±En} ∪ (S ∩ E⊥

n ), where S is the unit sphere of gn.

Proof. Let X =
∑n

i=1 aiEi, Y =
∑n

j=1 bjEj , Z =
∑n

k=1 akEk, and V =∑n
l=1 plEl. And assume that ai, bj , ck, pl satisfies the conditions

||X|| = ||Y || = ||Z|| = ||V || = 1

and

〈X, V 〉 = 〈Y, V 〉 = 〈Z, V 〉 = 0.
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Then

(∇XAV )(Y ) = −∇X(∇Y V ) +∇∇XY V

=
n−1∑

i=1

(−aibnpi + aibipn)En

= (
n∑

i=1

aibi)pnEn.

So we have

〈(∇XAV )(Y ), Z〉 = (
n∑

i=1

aibi)cnpn.

If pn = 0, then V is strongly normal. Thus every vector in the set S ∩ E⊥
n

is strongly normal. If p1 = p2 = · · · = pn−1 = 0, then an = bn = cn = 0 and
thus En is strongly normal.

Now assume that pn · pi 6= 0, for some i, 1 ≤ i < n. Put

X = Y = Z =
1√

p2
i + p2

n

(−pnEi + piEn) .

Then 〈(∇XAV )(Y ), Z〉 = pn · pi 6= 0. So the vector V =
∑n

i=1 piEl with
pn · pi 6= 0, 1 ≤ i < n, is not strongly normal. This completes the proof. ¤

By the Theorem 1.1 and the Theorem 4.1, for n > 2, the set of minimal unit
vector fields and the set of strongly normal unit vector fields on the Lie group
Gn are the same.
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