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MAP,, MAP,/G/1 FINITE QUEUES WITH SERVICE
SCHEDULING FUNCTION DEPENDENT UPON
QUEUE LENGTHS

Doo IL CHOI AND SANG MIN LEE

ABSTRACT. We analyze M APy, MAP,/G/1 finite queues with service
scheduling function dependent upon queue lengths. The customers are
classified into two types. The arrivals of customers are assumed to be the
Markovian Arrival Processes (MAPs). The service order of customers in
each buffer is determined by a service scheduling function dependent upon
queue lengths. Methods of embedded Markov chain and supplementary
variable give us information for queue length of two buffers. Finally, the
performance measures such as loss probability and mean waiting time
are derived. Some numerical examples also are given with applications in
telecommunication networks.

1. Introduction

We analyze M APy, M AP,/G/1 finite queues with a service scheduling func-
tion dependent upon queue lengths. The customers are classified into two types
(type-1 and type-2) according to their service characteristics. The service or-
der of each type is determined by a service scheduling function dependent upon
queue lengths [4]. The service time of all customers irrespective of customer
type has the same general distribution. A detailed description is given in Sec-
tion 2.

We analyzed a similar model when the arrivals are Poisson processes [4].
However, it is well known that the Poisson process is not appropriate for mod-
eling bursty arrival streams. The arrivals are thus assumed to be the Markov-
ian Arrival Processes (MAPs), as introduced by Lucantoni et. al. [11]. The
MAP is a nonrenewal process, and includes the phase-type renewal process,
a Markov-modulated Poisson process (MMPP) and the superpositions of such
processes as particular cases [11]. Asmussen and Koole [1] have shown that
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the MAP is weakly dense in the class of stationary point processes. Therefore,
the MAP is a fairly generalized arrival process while still remaining analyti-
cally tractable. Specially, it is appropriate to model traffics with bursty and
time-correlated properties between interarrivals [5, 9]. Traffics such as voice
and video in telecommunication networks have these properties [9].

Our research was motivated by performance analysis of the multiplexer in
a multimedia environment, as in the case of the Broadband Integrated Ser-
vices Digital Network (B-ISDN). The multiplexer such as ATM (Asynchronous
Transfer Mode ) supports diverse traffic streams with different characteristics.
These traffic streams require different Quality of Service (QoS) such as de-
lay and loss. Furthermore, the ATM networks should be utilized as fully as
possible. Thus, in order to improve the utilization of ATM networks while
meeting the QoS of each traffic streams, distinct treatment for traffic streams
with different characteristics is needed. Finally, the scheduling schemes must
be applied to support these traffic streams.

The representative scheduling schemes are the schemes with priority. There
are static and dynamic priority schemes. As a static priority scheme, the Head
of Line (HOL) priority scheme [12, 13] has been applied to satisfy QoS of traffic
with stringent delay constraint. However, in HOL priority scheme, the low
priority class can suffer by long delay. Recently, to overcome this shortcoming,
the dynamic priority schemes including the Queue Length Threshold (QLT)
scheduling scheme have been proposed [2, 3, 7, 10]. Purpose of these schemes
is for improving the QoS of low priority traffic while meeting delay constraint
of high priority.

In this paper, we give an unified analysis of the queueing system with a gen-
eral service scheduling function. The assumption of MAPs can be applied
to many bursty environments. Furthermore, the existing many scheduling
schemes can be given as special cases of our model. The performance mea-
sures of these schemes are compared throughout the numerical examples. This
comparison of performance measures is expected to help the system designers
select the optimal scheduling scheme for their given system. The MAP also is
compared with Poisson process. We show that the bursty and time-correlated
properties have an important effect on the performance of system. Finally,
these results emphasize the importance of exact modeling for arrival process.

Following this section, the detailed MAP and model description are given in
Section 2. By using the embedded Markov chain and supplementary variable
method, we obtain the queue length distribution at departure epochs and an
arbitrary time in Section 3. Then, the loss probability and the mean waiting
time can be derived. In Section 4, the some numerical examples are presented
to illustrate the effectiveness of our proposed queueing system. In particular,
we show that the existing many scheduling schemes can be given as a special
case of our service scheduling function.
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2. Model description and preliminary for analysis

The type-k(k = 1,2) customers arrive to the system according to the MAP
with representation (C}, D), where C and Dy, are My x M), matrices. Here
My, is the number of states in the underlying Markov process governing arrivals
of type-k customer. There are two separate buffers (buffer I and buffer II) to
accommodate type-1 and type-2 customers with different capacities K; and
K respectively. The customers arriving when the corresponding buffer is full
are lost. The service order for customers of each buffer is determined by the
service scheduling function fx (i, 7), where fx (i, 7) is the probability that a type-
k(k = 1,2) customer at service initiation is selected when there are i type-1 cus-
tomers and j type-2 customers. Clearly, f1(4,0) = 1,4 > 0, f2(0,7) = 1,7 >0
and f1(¢,7) + f2(i,7) = 1. The service times of customers are independent and
identically distributed with distribution function G(-), mean pu and Laplace
transform G*(s). The service of customers in each buffer is based on the first-
come first-service. Before proceeding to the analysis, we consider the super-
posed arrival process of two independent MAPs with representations (C'1, D1)
and (Cy, Ds). Let M be M;Ms,. In order to distinguish arrivals of the type-1
and type-2 customer, we introduce the following M x M matrices:

Dy =D, ® Iy, Dy =1, ® Dy,
C=0C &0, D = Dy + Dy,
where ® and @ are the Kronecker product and the Kronecker sum [8], and
I.(k = 1,2) is the identity matrix of the same order as Dy.
Let Ak(t) (k =1,2) be the number of arrivals of the type-k customer during
the interval (0,¢], and A(t) = A;(t) + Aa(t). We also set J(t) be the state

at time t of the underlying Markov process governing the superposed arrival
process. Define the joint conditional probabilities as follows:

p(nlan2aj7t‘i) = P’I“{A]_(f) = T'L]_,Ag(t) = N2, J(t) = j|A(O) = 0’ J(O) = Z}a
711,”220, 1§’L,j§M

By the Chapman-Kolmogorov’s forward equation, we have the following differ-
ential-difference equations for the matrices

P(nq,n2,t) £ (p(n1,no, j,t)i))1<ij<m
of order M:
P/(nl,n%t) = P(nl,n%t)C’ + P(m - 1,n27t)D1 + P(nl,ng - ].,t)D27

where P(—1,ng,t) and P(ny, —1,t) are 0 matrices. It is then easily shown that
the matrix P(ny,ns,t) has the probability generating function

ni  n2
217227 E E n17n27 Zl )

nl—O ng = =0

= e(CtaDitzaDa)t |z1] <1, |z < 1.
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Let 7 be the steady-state probability vector of the underlying Markov process
J(t). Then 7 is given by solving the equations 7(C' + D) = 0, me = 1. The
mean arrival rate of type-k customer is expressed by A\; = mDie(k = 1,2),
where e is a column vector of 1s.

3. Analysis
3.1. The joint queue length distribution at departure epochs

We consider the joint queue length distribution immediately after departure
epochs. Let 7, (n > 1) be the n-th departure epoch of a customer with 79 = 0.
We introduce the notations

Ni(n) = the queue length of buffer I at time 7,4+,
Ny(n) = the queue length of buffer II at time 7,+,
Jn, = the state of the underlying Markov process at time 7,, + .

The process {(N1(n), Na(n), J,),n > 0} then forms a Markov chain, and its
states are labeled in lexicographic order, that is,

(0,0,1)---(0,0,M)(0,1,1)--- (0,1, M) - - - (K, Ko, M).

We analyze the stationary probability distribution for the joint queue length,
defined by

Tkli = lim Pr{Nl(n) = k,NQ(n) = Z,Jn = 7;}7
0<Ek<K;, 0<I< Ky 1<i<M,

Xt = (Th1,1, Tk 1,2, - Thgm), 0 k<K, 0<I<K,,
X = (Xk,0,Xk,15 - Xk K,), 0 < k < Ky,
X = (X0, X1, -, XK, )-

To obtain the joint queue length distribution at departure epochs, we need to
know the distribution for number of arrivals during the service time. Thus, we
introduce the following matrices:

Ay = / P(k,l,7)dG(z), k>0,1>0.
0

The (4, j)-clement of the matrix Ay ; is the conditional joint probability that
there are k type-1 arrivals and [ type-2 arrivals during the service time and the
state of the underlying Markov process is j at the next departure epoch, given
that the system is nonempty and the state of the underlying Markov process
is 7 just after a departure.

Furthermore, let

Ay = (=C YDA, k>0,01>0.
The (3, j)-element of the matrix A;ﬁl is the conditional joint probability that

there are k type-1 arrivals and [ type-2 arrivals during the service time and the
state of the underlying Markov process is j at the next departure epoch, given
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that the system is empty and the state of the underlying Markov process is i
just after a departure.
We also introduce the matrices

Z Pk,l,sz ), AZ_Z/

P(k,1,2)dG(x),

Akj = ZA]C,TH AE,l = Z An,l» k 2 07l Z 07
n=l n=~k

o
! !
A Ky Z Akx"’ A?th

n:Kg

> Y A

ny= Kl no= Kg
The one-step transition probabilities and the matrices are now defined:

P i)ty U1, J2) = nlilgo Pr{Ni(n+1) =k, No(n+1) =1, Jpy1 = j2
|N1(Tl):’L,N2( )_jv ]1}7
Pligyey = (Plagy: (e (G15 92))1<51 o< -

The one-step transition probabilities are then given by
a. Fori=0and j =0

Ak,l, if0<k< Ky, 0<I< Ky,
- B ka if0<k< Ky, | =Ko,
0,0):(k,1) = A;Tl’l, ifk=K;, 0<1< Ko,
/KI’KZ ifk=K, | =K.
b. Fori=0and 7 > 1
0 ifl<j—1,
A ji1s f0<k<Ki, j—1<Il<K,,
Pojyety = A 571 if0<k< Ky, I =Ko,
Az i1 ifk=Ky, j—1<I1< Ky,
Aw 7 ifk=Ky, | =K.
c. Fori>1
P jy:ey = 0, for all j,1, ifk<i—1.
d. For 1 <i< K;
0, ifl<j—1,
F1(, ) Ak—igr,—j + f2(4,7) Ar—ii—jt1, if k< Ki,l < Ko,
Pl jy:kyny = fl(ivj)Ak_i+17K2_j + fQ(Z,])Ak_i,Kz_j_,'_l, if k< Ky,l =Ko,
1) A= + D) AT =1 if k=K;,l < K,
fl(i,j)AKﬁiH)m + fQ(i,j)Am7m7 if k=Kl =Ko,.
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e. For 1=K,
0, if 1<j—1,
J1(K1,5)Ao—j, ifk=K; —1,1 < Ko,
Py =  [ilK, ) Ay == ifk=K —1,1l= K,
fi(K1,9) Az + f2 (K1, ) Ag s if k= Ki,l < Ky,

fi(By, ) A =5 + (KL ) As 571, k=Kl = Ko,

where matrices A_; . and A. _; are 0 matrices.

Let P be the one-step transition probability matrix of the Markov chain
{(N1(n), Na(n),J,),n > 0}. The elements of the matrix P are given by
Pi j):(k,1)(J1, J2) in lexicographic order. The vector x for the joint queue length
distribution at departure epochs is then obtained by solving the equations

x P = x, xe = 1.
3.2. Queue length distribution of each buffer at an arbitrary time

Let Ni(t) and Na(t) be the queue lengths (excluding customer in service) of
buffers I and IT at time ¢ respectively. We also introduce the notation

0 if the server is idle at time ¢,
§(t) =

1  if the server is busy at time ¢.

We first investigate the stationary probability that the system is empty:
yo(j) = lim Pr{Ni(t) = 0,Na(t) = 0,J(t) = j,£(t) = 0}, 1 < j < M,

yo = (¥o(1),40(2), -, yo(M)).

Since the system is work-conserving, the yo doesn’t depend on the service
discipline. Thus, we may assume the service discipline to be first-come first-
service irrespective of customer type. The j-th element yo(j) of yo is then
derived by applying the key renewal theorem (e.g. see Theorem 6.3, p. 153,
Cinlar [6]):
M 1 0o

W) =3 g [, PO
where m(0, k) denotes the mean recurrence time of the state (0,0,k) in the
Markov chain {(Ni(n), Na(n), J,,),n > 0}.
By the fact that the j-th element of the vector [, P(0,0,t)dte = —C~'e is the
mean duration of an idle period starting in state j of the underlying Markov
chain {J,,n > 0}, we easily have

m(0,k) = Eacgy(l)’k,

where E = x0,0(—C~!)e + u is the mean interdeparture time of customers [6].
Finally, we obtain the probability yo(j):

1
yo(j) = j-th element of Exo,o(fC’*l).
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Next, we derive the queue length distribution of buffer I at an arbitrary time
when the server is busy.
The stationary queue length probability of buffer I is then defined

yn(j) = lim Pr{Ny(t) =n, J(t) = j,&(t) =1}, 1 < j < M,

t—o0o

Yo = (yn(1),...,yb(M)), 0<n<K.

We use the supplementary variable method for analysis. Let T and T be the
remaining and the elapsed service time for the customer in service respectively.
We define the joint probability distribution for the queue length of buffer I and
the remaining service time of the customer in service at arbitrary time 7 as

a(n, j,t)dt = Pr{N,(1) =n,J(1) = j,t <T < t+dt &) =1}.

We also define the Laplace transform of a(n, j,t) and the vectors

oo
a*(n,j,8) = / e ta(n, j,t)dt,
0
ar(s) = (a*(n,1,s),...,a"(n,M,s)), 0<n<K;.
Since the queue length of buffer I at an arbitrary time 7 contains the number of
arrivals during the elapsed service time from last departure epoch before time
7, we need to know the number of arrivals during the elapsed service time. The
conditional probability 3(n, j1,j2,t)dt is defined as
B(n, j1, ja, t)dt = Pr{ n arrivals of type-1 customer during T,
J(T)=jo, t<T <t+dt|J(F) =41}, n>0,

where 7 is the starting time of the service time which includes the time 7.
We also define the Laplace transform of 8(n, j1, jo,t) and the matrices

ﬁ*(nvjlanaS) :/ e_Stﬁ(nvjlvj%t)dtv
0
ﬁ;(s) = (ﬁ*(nvjlvj%S))1Sj1,j2§M'

Then, the vectors «,(s) satisfy the following equations:
For 0 <n < Kj,

Ko n+1

x0.0(=C™)DB(s) + > Y 1k, m)Xpm By ji1(5)

. 0
Oén(S) :E
m=0 k=1

K2 n

+ D0 folkm)xemBi_i(s) |

m=1 k=0
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and
%) Ky Ki o
Al (5) = [x00(=CTOD Y B(s)+ 3D Alkmixim Y, Bi(s)
1=K, m=0 k=1 I=K1—k+1
Ko K o)
+> flkm)Xem Y ﬁi‘(s)]
m=1 k=0 I=K,—k

By same method as that in Choi, Kim, Choi, and Sung [3], we obtain that

n

Z Ak Rp—i(s) = G*(s)Rn(s)
k=0

“(g) = X
ﬂn(s)_‘u

)

where R, (s) = (sI + C + Do) 1[(=D1)(sI + C + Dy)~ 1™

Substituting G (s) into above equation «(s), and then putting s = 0, after
some algebraic manipulation we obtain the queue length probabilities y. =
az(0):

For 0 < n < Ky,

D AL(C+ Do) YDy (=(C + Dy)

<
sk
|
| =
—
»
<)
=N
|
“
>
—
3

—(C + D2) D1 (= (C + D2)H)}"}

Kz n+1 n—k+1
+ Z Z fi(k,m)Xpem { Z Ay (C+ Do) YDy (—(C + Dy)~1)nh+i=t

m=0 k=1 =0
—(C+ Do) Dy (—(C + Dy) ")}~ H41}

Ky n ek
2D falkm)xic {Z AL (C + D2) " HDy(—(C + Dy) Yy h

m=1 k=0 =0

—(C+ Dy) D1 (=(C + Do) ")}* "},

and
Ki—1

Yie =7— Y Yi— Yo
k=0

The stationary queue length probability of buffer II is defined as
Yn(3) = Jim Pri{Na(t) =n,J(t) = j,&(t) = 1}, 1 <j < M,
Yo =Wn),...,yn(M)),  0<n< K.

By the same method as in the previous case, we obtain the queue length dis-
tribution of buffer II.
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For 0 < n < Ko,

n

Yn =% [x00(~=C")D{>" Au(C + D) {Da(~(C + D))}
=0
—(C+ Dy)"HDy(—(C + Dl)*l)}"}
Ki n n—m
2> Ak, m)x’“="1{ > A(C+ D) HDo(—(C+ Dy)
k=1m=0 1=0
~(C+ D) Dy (—(C + D)}
Ki n+1 n—m+1
+ Z Z fz(k,m)x;g,m{ Z A (CH+ Dy) " HDo(—(C + Dy)~ 1)yt
k=0m=1 1=0
—(C+ D) Do~ (C + D) Y,
and
Ko—1
y%(z =T = Z YJ%_Y&
k=0

Using the queue length distribution of each buffer at an arbitrary time, we
obtain the following performance measures:
a. The loss probabilities for type-1 (PL..) and type-2 (P2

2 ) customers:

F)I%)ss = @7 I%SS = @
1 2
b. The mean queue lengths of buffer I (L) and buffer I (L?):
Ky Ko
L'= Ziy%e, L* = Ziy?e.
=0 i=0

By the Little law, we obtain the mean waiting time of a customer in each buffer:
c. The mean waiting times of type-1 (W?!) and type-2 (W?) customers:

Lt L?

_ 2 _
BT L TTr Ry N §

Wl

4. Numerical examples

In this section, we present some numerical examples. First, by specifying the
service scheduling function fx(i,7)(k = 1,2), we show that the existing many
scheduling schemes can be given as special cases of our proposed model, and
compare the performance measures of the schemes. Next, we investigate the
effects of system when the arrivals are MAPs and Poisson processes.

The following schemes are given as special cases of our model:

a. Head of Line priority scheduling scheme (HOL):

f2(7:aj):17 1f.7>0



682 DOO IL CHOI AND SANG MIN LEE

b. Shortest Job First scheduling scheme (SJF):
L. 1, if 1 < j,
K@) = {O, otherwise.
c. Longest Job First scheduling scheme (LJF):
. 1, ifi > j,
1) = {0, otherwise.
d. Bernoulli scheduling scheme (Bernoulli):
fili,j)=p, ifi>0, j>0.
e. QLT scheduling scheme with threshold T on buffer I (QLT):
. 1, ifi>T,
hu@) = {0, otherwise.
f. QLT scheduling scheme with Bernoulli schedule (QLT with Bernoulli):
1, ifi>T,

P, otherwise.

fl(Zm]) = {

We take the following parameters for the numerical examples. First, MAPs
with (C, D), k = 1,2, are assumed by

T, = [—511 — A 011 ] . D= [/\11 0 } ’

012 —012 — A12 0 A2
— —621 — A1 021 — A1 O
C = D = .
2 [ da2 —022 — >\22] ’ 2 [ 0 /\22}

The service time of all customers is assumed to be constant and equal to one.
We also assume that the type-2 customers are more delay-sensitive than the
type-1 customers. Thus we take the buffer sizes as K1 = 10 and Ko = 5. In
all numerical examples, we furthermore set the threshold 7" = 5, the Bernoulli
probability p = 0.5, and 6117 = d12 = 0.1, d21 = a2 = 0.05, A} = A} and
A2/A11 = Xaa /A1 = 6.

Figs 1 and 2 display the loss probability and the mean waiting time of the
type-1 customer, respectively, as a function of the total effective arrival rate
AT + A5, From the figures, we can see that QLT, QLT with Bernoulli and LJF
scheduling schemes deliver good performance for the loss probability and the
mean waiting time.

Figs 3 and 4 display the loss probability and the mean waiting time of the
type-2 customer, respectively, as a function of the total effective arrival rate
AT + A5, From the figures, we can observe that HOL and SJF scheduling
schemes give good performance for the loss probability and the mean waiting
time. Finally from Figs 1-4, according to the characteristic of supported traffics,
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an appropriate scheduling scheme must be selected to satisfy Quality of Service
(QoS) of the traffic.

Next we compare the performance measures when the arrivals are MAPs
and Poisson processes. The cases of HOL, LJF, and QLT with Bernoulli are
compared. As a function of the total effective arrival rate A7 + A5, the loss
probability and the mean waiting time for HOL are given in Figs 5 and 6,
those for LJF in Figs 7 and 8, and those for QLT with Bernoulli in Figs 9
and 10. From the figures, we can see that the loss probability and the mean
waiting time when the arrival follows MAP are larger than those when the
arrival follows Poisson process. These results are attributed to the bursty and
time-correlated properties. Finally, these characteristics of source traffic have
an important effect on the performance of system.

In conclusion, we compared the performance measures of diverse service
scheduling schemes in this paper. We expect that these results will be helpful
to system designers in selecting an appropriate service scheduling scheme and
thereby optimizing their system. Furthermore we also compared MAPs and
Poisson arrivals, and confirmed that the burstiness of source traffic substan-
tially affects the performance of the system. Therefore, it is very important to
precisely model source traffic.

S 2
8 5 / —m—HOL
s < —eSJF
o 8 LJF
8 b —v—Ber
> QLT
2 104 —<— QLT with Ber
-12 4
v
-14 T T T T T T T T T

0.2 0.4 0.6 0.8 1.0
total effective arrival rate

FIGURE 1. total effective arrival rate vs log(loss probability)
for type-1 customer
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for type-2 customer



mean waiting time

MAP,, MAP,/G/1 FINITE QUEUES

8 —_
] —m— HOL 7
1 —e—SJF 74
67 —A—LJF /4
1 —wv— Ber <
5 aLT
] <4 QLT with Ber / v/
4 ]

N

pa

0.2 0.4

l/ —
= /l/
a—

T

0.6 0.8 1.0

total effective arrival rate

FIGURE 4. total effective arrival rate vs mean waiting time for
type-2 customer

log(loss probability)

FIGURE 5.

-10

—— type 1 traffic with MAP

——————— type 1 traffic with Poisson
type 2 traffic with MAP

,,,,,, type 2 traffic with Poisson

0.2 0.4

effective arrival rate vs log(loss probability) for HOL

0.6 0.8
effective arrival rate

685



686 DOO IL CHOI AND SANG MIN LEE
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FIGURE 7. effective arrival rate vs log(loss probability) for SJTF



MAP,, MAP,/G/1 FINITE QUEUES 687

44 —— type 1 traffic with MAP
——————— type 1 traffic with Poisson
1 type 2 traffic with MAP
—————— type 2 traffic with Poisson

mean waiting time

T
0.2 0.4 0.6 0.8 1.0
effecitive arrival rate

FIGURE 8. effective arrival rate vs mean waiting time for SJF

log(loss probability)
&
1

104 —— type 1 traffic with MAP
L B type 1 traffic with Poisson

type 2 traffic with MAP
12 4 —————— type 2 traffic with Poisson

0.2 0.4 0.6 0.8 1.0
effective arrival rate
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