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ON THE HYERS-ULAM-RASSIAS STABILITY
OF JENSEN’S EQUATION

Dongyan Zhang and Jian Wang

Abstract. J. Wang [21] proposed a problem: whether the Hyers-Ulam-

Rassias stability of Jensen’s equation for the case p, q, r, s ∈ (β, 1
β

) \ {1}
holds or not under the assumption that G and E are β-homogeneous F -
space (0 < β ≤ 1). The main purpose of this paper is to give an answer
to Wang’s problem. Furthermore, we proved that the stability property
of Jensen’s equation is not true as long as p or q is equal to β, 1

β
, or

β2
β1

(0 < β1, β2 ≤ 1).

1. Introduction

Let G denote a linear space and E denote a real or complex Hausdorff
topological vector space. f : G → E is a mapping. We call the following
equation

(1) 2f

(
x + y

2

)
− f(x)− f(y) = θ,

as Jensen’s equation.
More than half a century ago, S. M. Ulam [20] posed the following problem:

Give a group G, and a metric group E with the metric d(·, ·)
and a positive number ε > 0, does there exists a δ > 0 such
that if a function f : G → E satisfies d(f(xy), f(x)f(y)) < δ
for all x, y ∈ G, then there exists a homomorphism h : G → E
with d(h(x), f(x)) < ε for all x ∈ G?

In 1941, the case of approximately additive mapping was solved by D. H. Hy-
ers [6] for G and E being Banach spaces. Next, Th. M. Rassias [13] generalized
the conclusion of Hyers’ by introducing the unbounded Cauchy difference as
follows:
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Theorem. Let f : G → E be a mapping between Banach spaces subject to the
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (∀x, y ∈ G),

where ε, p are constants with ε > 0 and 0 ≤ p < 1. Then there exists a unique
additive mapping T : G → E such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (∀x ∈ G).

If, in addition f(tx) is continuous in t for each fixed x ∈ G, then T is linear.

The proof given in [13] also works when p < 0. In 1991, Z. Gajda [3] following
the spirit of the proof of Th. M. Rassias’s Theorem for the unbounded Cauchy
difference by replacing n by −n solved Th. M. Rassias’s question by proving
the stability theorem for all real values of p that are strictly greater than one.
And in this paper, Z. Gajda found firstly that the stability problem does not
hold when p = 1.

The remarkable generalization of Th. M. Rassias for D. H. Hyer’s Theo-
rem promoted greatly the development of the stability problems of functional
equations. It stimulated a number of mathematicians to study the stability
problems of various functional equations. For more detailed information of
such a field one can refer to [4], [14], [15], and [16].

In this paper, we deal with the stability of the Jensen’s functional Eq.(1).
The first result on the stability of Jensen’s equation was carried out by

Z. Kominek [9]. New generalizations of Jensen’s functional equation were given
by Th. M. Rassias [12]. In 1998, S.-M. Jung [8] gave an important generalization
of the Z. Kominek’s result. In fact, he proved the following theorem:

Theorem. Let E1 be a real normed space and let E2 be a real Banach space.
Assume that δ, θ ≥ 0 are fixed, and let p > 0 be given with p 6= 1. Suppose a
mapping f : E1 → E2 satisfied the functional inequality∥∥∥∥2f

(
x + y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ δ + θ(‖x‖p + ‖y‖p)

for all x, y ∈ E1. Furthermore, assume f(0) = 0 and δ = 0 in above inequality
for the case of p > 1. Then there exists a unique additive function T : E1 → E2

such that

‖f(x)− T (x)‖ ≤ δ + ‖f(0)‖+
θ

21−p − 1
‖x‖p (for p < 1)

or

‖f(x)− T (x)‖ ≤ 2p−1θ

2p−1 − 1
‖x‖p (for p > 1)

for all x ∈ E1.

Later, many results concerning the stability of Jensen’s equation were ob-
tained by numerous authors, such as [11], [19], and [10]. J. Wang [22], [24]
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attempted to weaken the condition of the space. She proved a generalized
conclusion of S.-M. Jung. In the following, we introduce Wang’s result [24]:

Corollary I. Let G be an F ∗-space and E be an F -space with the property
that there exists 0 < β ≤ 1 such that ‖u

3 ‖ ≤ ‖u‖
3β for all u ∈ E. If φ(x, y) =

δ+ ε1‖x‖p+ε2‖y‖q( δ, ε1, ε2 ≥ 0, p, q < β), then there exists a unique additive
mapping T : G → E such that

‖T (x)− f(x) + f(θ)‖
≤ 2δ

3β − 1
+

2ε1

3β − 3p
‖x‖p +

(1 + 3q)ε2

3β − 3q
‖x‖q

for any x ∈ G. If there exists at least one of p, q such that it is strictly less
than 0, then the domain of T is G \ {θ} instead of G.

Corollary II. Let G be an F ∗-space with the property that there exists 0 <

β ≤ 1 such that ‖x
3‖ ≤ ‖x‖

3β for all x ∈ G, and E be an F -space. Assume that
f(θ) = θ. If φ(x, y) = δ + ε1‖x‖p + ε2‖y‖q( ε1, ε2 ≥ 0, p, q > 1

β ), then there
exists a unique additive mapping T : G → E such that

‖T (x)− f(x)‖

≤ 2ε1

3pβ − 3
‖x‖p +

(1 + 3qβ)ε2

3qβ − 3
‖x‖q

for any x ∈ G.

In above corollaries, φ(x, y) = 1
2f(x+y

2 )− f(x)− f(y).

J. Wang noticed that these results hold for p, q < β or p, q > 1
β . She raised

the following question: What does it hold if p, q satisfy β < p, q < 1
β under the

assumption that G and E are β-homogeneous F -spaces (0<β≤1)? In Section
2 of the present paper, by still using the ideas from the papers of Hyers [6],
Rassias [13], Rassias and S̆emrl [16], we provide the stability of Eq.(1) for
β2 < p, q < 1

β1
(p, q 6= β2

β1
) in β-homogeneous F -space. In Section 3, we show

that the stability of Jensen’s equation is not satisfied as long as p or q equals
β2,

1
β1

or β2
β1

(0 < β1, β2 ≤ 1).

2. Stability of Eq.(1) for β2 < p, q < 1
β1

(p, q 6= β2

β1
)

From now on, we let N denote the set of positive integers set and R denotes
the set of real numbers set, respectively. Meanwhile, We assume p, q to be
different real numbers.

Firstly, we introduce the definition of F -space and β-homogeneous (see [18]).
Let X be a linear space. A non-negative valued function ‖ · ‖ defined on X

is called an F -norm if it obeys the following rules:
(n1) ‖x‖ = 0 if and only if x = 0;
(n2) ‖ax‖ = ‖x‖ for all a, |a| = 1;
(n3) ‖x + y‖ ≤ ‖x‖+ ‖y‖;
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(n4) ‖anx‖ −→ 0 provided an −→ 0;
(n5) ‖axn‖ −→ 0 provided xn −→ 0.

A space X with an F -norm is called an F ∗-space. An F -pseudonorm (‖x‖ =
0 does not necessarily imply that x = 0 in (n1)) is called β-homogeneous (β > 0)
if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ R. A complete F ∗-space is said to
be an F -space.

Theorem 2.1. Let G and E be a β1-homogeneous F ∗-space and a β2-homo-
geneous F -space, respectively. Suppose that f : G → E is a mapping with the
property that

(2)
∥∥∥∥2f

(
x + y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ε1‖x‖p + ε2‖y‖q,

where β1, β2 ∈ (0, 1], ε1, ε2 ∈ (0,∞) and p, q ∈ (β2,
1
β1

) \ {β2
β1
}. Then there

exists a unique additive mapping T : G → E such that

(3) ‖T (x)− f(x)‖ ≤ 2ε1

3β2 − 3β1p
‖x‖p +

(1 + 3β1q)ε2

3β2 − 3β1q
‖x‖q,

in the case β2 < p, q < β2
β1

, while in the case β2
β1

< p, q < 1
β1

(4) ‖T (x)− f(x)‖ ≤ 2ε1

3β1p − 3β2
‖x‖p +

(1 + 3β1q)ε2

3β1q − 3β2
‖x‖q.

Moreover, if for each fixed x ∈ G, there exists a real numbers δx > 0, such
that f(tx) is continuous on [0, δx], then T (x) is linear.

Proof. Let g(x) = f(x) − f(θ). Then g also satisfies (2). From this, we can
assume that f(θ) = θ without loss of generality.

When β2 < p, q < β2
β1

, we claim that

(5)

‖3−nf(3n)− f(x)‖

≤
n∑

k=1

3k(β1p−β2) · 2 · 3−β1pε1‖x‖p

+
n∑

k=1

(3k(β1q−β2) · 3−β1q + 3k(β1q−β2))ε2‖x‖q

holds for any integer n. The verification of (5) follows by induction on n.
Indeed, for n = 1, we set y = −x, then

‖ − f(x)− f(−x)‖ ≤ ε1‖x‖p + ε2‖x‖q.

Replacing x by −x and y by 3x, (5) implies

‖2f(x)− f(−x)− f(3x)‖ ≤ ε1‖x‖p + ε2 · 3β1q‖x‖q.
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Taking the two inequality into account, then

‖3−1f(3x)− f(x)‖ = ‖3−1[f(3x) + f(−x)− 2f(x)− f(−x)− f(x)]‖
≤ 3−β2 [‖f(3x) + f(−x)− 2f(x)‖+ ‖ − f(−x)− f(x)‖]
≤ 2 · 3−β2 · ε1‖x‖p + (1 + 3β1q) · 3−β2ε2‖x‖q.

Assume that the formula is true for n = m, we want to examine the case when
n = m + 1. We have

‖3−(m+1)f(3(m+1)x)− f(x)‖
= ‖3−1[3−mf(3m(3x))− f(3x)] + 3−1f(3x)− f(x)‖

≤ 3−β2

[
m∑

k=1

3k(β1p−β2) · 2 · 3−β1pε1‖3x‖p +
m∑

k=1

(3k(β1q−β2) · 3−β1q+3k(β1q−β2))ε2‖3x‖q

]

+ 2 · 3−β2 · ε1‖x‖p + (1 + 3β1q) · 3−β2ε2‖x‖q

=
m+1∑

k=1

3k(β1p−β2) · 2 · 3−β1pε1‖x‖p+
m+1∑

k=1

(3k(β1q−β2) · 3−β1q+3k(β1q−β2))ε2‖x‖q.

Therefore (5) is proved.
Let

(6) T (x) = lim
n→∞

f(3nx)
3n

.

It is easy to see that T exists. In fact,
∥∥∥∥

f(3mx)
3m

− f(3nx)
3n

∥∥∥∥

=
∥∥∥∥

1
3n

[
f(3m−n(3nx))

3m−n
− f(3nx)

]∥∥∥∥

≤ 1
3nβ2

[
m−n∑

k=1

3k(β1p−β2)2 · 3−β1pε1‖3nx‖p +
m−n∑

k=1

(3k(β1q−β2) · 3−β1q+3k(β1q−β2))ε2‖3nx‖q

]

≤ 1
3n(β2−β1p)

[
2ε1

3β2 − 3β1p
‖x‖p +

(1 + 3β1q)ε2

3β2 − 3β1q
‖x‖q

]

for any m > n, m, n ∈ N. By virtue of β2 − β1p>0, it follows that

lim
n→∞

∥∥∥∥
f(3mx)

3m
− f(3nx)

3n

∥∥∥∥ = 0.

Thus { f(3nx)
3n } is a Cauchy sequence. However the F -space is complete, thus

{ f(3nx)
3n } converges. It follows that T (x) = lim

n→∞
f(3nx)

3n exists. Hence by letting

n →∞ in (5), one obtains

‖T (x)− f(x)‖ ≤ 2ε1

3β2 − 3β1p
‖x‖p +

(1 + 3β1q)ε2

3β2 − 3β1q
‖x‖q.
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Now we shall deal with the additivity of T . On account of (6), one has

(7) T (3mx) = lim
n→∞

f(3n(3mx))
3n+m

· 3m = 3mT (x).

And employing the condition (2), we set

(8)

∥∥∥∥2T (
x + y

2
)− T (x)− T (y)

∥∥∥∥

= lim
n→∞

∥∥∥∥2 · 1
3n

f

(
3nx + 3ny

2

)
− 1

3n
f(3nx)− 1

3n
f(3ny)

∥∥∥∥

≤ lim
n→∞

( ε1

3n(β2−β1p)
‖x‖p +

ε2

3n(β2−β1q)
‖y‖q

)

= 0.

By (3), (6), and (7), it follows

‖2T (2x)− 4T (x)‖ = ‖2T (2x)− T (3x)− T (x)‖
=

∥∥3−n [2T (3n · 2x)− T (3n · 3x)− T (3nx)]
∥∥

≤ 3−nβ2 (‖2T (3n · 2x)− 2f(3n · 2x)‖+ ‖T (3n · 3x)− f(3n · 3x)‖)

+ 3−nβ2

(
‖T (3nx)− f(3nx)‖+

∥∥∥∥2f

(
3n(3x + x)

2

)
− f(3n · 3x)− f(3nx)

∥∥∥∥
)

≤ 2ε1‖x‖p

3n(β2−β1p)·(3β2 − 3β1p)
(2β1p+β2+3β1p+1)

+
(1 + 3β1q)ε2‖x‖q

3n(β2−β1q)·(3β2 − 3β1p)
(2β1q+β2+3β1q+1)

+
3β1p · ε1

3n(β2−β1p)
‖x‖p +

ε2

3n(β2−β1q)
‖x‖q.

Clearly, ‖2T (2x) − 4T (x)‖ → 0 as n → ∞. Thus, 2T (2x) = 4T (x). From (8),
we get

T (x + y) =
1
2
(T (2x) + T (2y)) = T (x) + T (y).

We will prove the uniqueness of T . Suppose that H : G → E is another additive
mapping satisfying (3) for all x ∈ G. It follows that

‖T (x)−H(x)‖ =
1

nβ2
‖T (nx)−H(nx)‖

=
1

nβ2
‖T (nx)− f(nx)−H(nx) + f(nx)‖

≤ 1
nβ2

(‖T (nx)− f(nx)‖+ ‖H(nx)− f(nx)‖)

≤ 4ε1‖x‖p

n(β2−β1p) · (3β2 − 3β1p)
+

2(1 + 3β1q)ε2‖x‖q

n(β2−β1q) · (3β2 − 3β1q)
,

and so ‖T (x)−H(x)‖ → 0 as n →∞. Hence T (x) = H(x) for all x ∈ G.
This finishes the first step of the proof.
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When β2
β1

< p, q < 1
β1

, we claim that

(9)

‖3nf(3−n)− f(x)‖

≤
n∑

k=1

3k(β2−β1p) · 2 · 3−β2ε1‖x‖p

+
n∑

k=1

(3k(β2−β1q) · 3−β2 + 3(k−1)(β2−β1q))ε2‖x‖q.

Note that substituting 3−nx by x in (5) and later multiplying both sides by
3nβ2 , we can yield the above formula (9).

Define T (x) = lim
n→∞

3nf(3−nx). The rest of the proofs follows as that in the

case of β2 < p, q < β2
β1

, and therefore we omit it.
Consequently, we obtain

‖T (x)− f(x)‖ ≤ 2ε1

3β1p − 3β2
‖x‖p +

(1 + 3β1q)ε2

3β1q − 3β2
‖x‖q.

Moreover, if for each fixed x ∈ G, there exists a real number δx > 0, such
that f(tx) is continuous on [0, δx], we claim that f(tx) is bounded on [0, δx].
Otherwise, if this were not the case then for any n ∈ N, there exists tn ∈ [0, δx]
such that ‖f(tnx)‖ ≥ n. For the bounded sequence {tn}, we could apply the
Bolzano-Weierstass theorem to find a convergent subsequence {tnk

} and t0 ∈
[0, δx] such that lim

k→∞
tnk

= t0. It follows that lim
k→∞

tnk
x = t0x for each fixed

x ∈ G. Since f(tx) is continuous in t0, we can conclude that lim
k→∞

f(tnk
x) =

f(t0x). Thus, we get a contradiction to lim
k→∞

‖f(tnk
)‖ = ∞. The remaining

proof follows a similar argument as in the proof of [16], hence we obtain that
T (x) is linear. Thus, claim is given. ¤

Remark 1. Let G and E be a β1-homogeneous F ∗-space and a β2-homogeneous
F -space, respectively. Suppose that f : G → E satisfies

∥∥∥∥2f(
x + y

2
)− f(x)− f(y)

∥∥∥∥ ≤ δ.

Then there exists a unique additive mapping T : G → E such that

‖T (x)− f(x)‖ ≤ 2δ

3β2 − 1

for all x ∈ G.

Now we construct an F -norm satisfying the condition that there exists 0 <

β < 1 such that ‖x
3‖ ≤ ‖x‖

3β but not β-homogeneity. So, the condition of spaces
G and E in theorem can be weakened.
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Example 1. We define the non-negative function ‖ · ‖ in R by

‖x‖ =
{ |x|β |x| ≤ 1
|x| |x| > 1 (∀x ∈ R).

Then ‖ · ‖ is an F -norm with the property that ‖ x
n‖ ≤ ‖x‖

nβ (n ∈ N), but not
the β-homogeneity.

Proof. We have only to show that ‖ · ‖ satisfies the triangle inequality. To
establish one, we shall consider three cases. In the case where |x| > 1, |y| > 1,
one has

‖x + y‖ = |x + y| ≤ |x|+ |y| = ‖x‖+ ‖y‖.
In the case where |x| < 1, |y| < 1, and likewise |x + y| ≤ 1,

‖x + y‖ = |x + y|β ≤ (|x|+ |y|)β ≤ |x|β + |y|β = ‖x‖+ ‖y‖,
or |x| < 1, |y| < 1 and likewise |x + y| > 1, and therefore

‖x + y‖ = |x + y| ≤ |x|+ |y| ≤ |x|β + |y|β = ‖x‖+ ‖y‖.
While in the case where |x| > 1, |y| < 1 or |x| < 1, |y| > 1, we might as well
suppose that |x| > 1, |y| < 1. Then if |x + y| ≤ 1 holds, we obtain

‖x + y‖ = |x + y|β ≤ |x|β + |y|β ≤ |x|+ |y|β = ‖x‖+ ‖y‖.
However, if |x + y| > 1 then,

‖x + y‖ = |x + y| ≤ |x|+ |y| ≤ |x|+ |y|β = ‖x‖+ ‖y‖.
Therefore ‖ · ‖ is an F -norm.

Now we will prove that ‖ x
n‖ ≤ ‖x‖

nβ for any n ∈ N. Indeed, when |x| ≤ n,
then ∥∥∥x

n

∥∥∥ =
∣∣∣x
n

∣∣∣
β

=
1
nβ
|x|β =

1
nβ
‖x‖β

and also when |x| > n, one has
∥∥∥x

n

∥∥∥ =
|x|
n
≤ |x|

nβ
=
‖x‖
nβ

.

It follows that ‖ x
n‖ ≤ ‖x‖

nβ for any x ∈ R.
It is easy to see that the ‖ · ‖ is not β-homogeneous.
Therefore the proof is completed. ¤

3. Instability of Eq.(1)

We will first cite the counterexample constructed by Z. Gajda [3].

Example 2. For a fixed ε > 0 and µ = ε
6 , define a function f : R→ R by

f(x) =
∞∑

n=0

φ(2nx)
2n

x ∈ R,
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where the function φ : R→ R is given by

φ(x) =





µ x ≤ 1,
µx −1 < x < 1,
−µ x ≤ −1.

Theorem 3.1. The function f defined above satisfies

(10) |f(x + y)− f(x)− f(y)| ≤ ε(|x|+ |y| 12 )

for all x, y ∈ R. However

sup
{ |f(x)− T (x)|

|x| : x ∈ R\{0}
}

= ∞

for each additive mapping T : R→ R.

Proof. The inequality (10) is trivially fulfilled if x = y = 0.

Now, we assume that |x|+ |y| 12 < 1. Then |x| < 1, |y| 12 < 1. There exists an
N ∈ N such that

2N−1(|x|+ |y| 12 ) < 1, 2N (|x|+ |y| 12 ) ≥ 1.

Since |x|+ |y| ≤ |x|+ |y| 12 , we get 2N−1(|x|+ |y|) ≤ 2N−1(|x|+ |y| 12 ) < 1. Hence,

|2N−1(x + y)| ≤ 2N−1(|x|+ |y|) < 1 and |2N−1x| < 1, |2N−1y| < 1,

which means that for each n ∈ {0, 1, 2, . . . , N −1}, 2n−1x, 2n−1y, 2n−1(x+y) ∈
(−1, 1). Since φ is a linear mapping on the interval, we infer that

φ(2n(x + y)) = φ(2nx) + φ(2ny)

for n = 0, 1, . . . , N − 1. As a result, we obtain

|f(x + y)− f(x)− f(y)|
|x|+ |y| 12 ≤

∞∑
n=0

|φ(2n(x + y))− φ(2nx)− φ(2ny)|
2n(|x|+ |y| 12 )

=
∞∑

n=N

|φ(2n(x + y))− φ(2nx)− φ(2ny)|
2n(|x|+ |y| 12 )

≤
∞∑

k=0

3µ

2k · 2N (|x|+ |y| 12 )
≤

∞∑

k=0

3µ

2k
= 6µ.

Finally, assume that |x|+ |y| 12 ≥ 1. Then because of the boundedness of f , we
have

|f(x + y)− f(x)− f(y)|
|x|+ |y| 12 ≤ 6µ = ε,

since

|f(x)| ≤
∞∑

n=0

= 2µ, x ∈ R.

Thus, we conclude that f satisfies (10) for all x, y ∈ R. The proof of the last
assertion in the theorem follows the same argument as in [3]. ¤
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Remark 2. Let the function f be as before.
(i) If G = (R, ‖ · ‖1) with the Euclidean metric ‖ · ‖1 = | · | and E = (R, ‖ · ‖2)

with the β-homogeneous norm ‖ · ‖2 = | · |β , then

‖f(x + y)− f(x)− f(y)‖2 ≤ εβ(‖x‖β
1 + ‖y‖

β
2
1 )

for any x, y ∈ R, however

sup

{
‖f(x)− T (x)‖2

‖x‖β
1

: x ∈ R\{0}
}

= ∞

for each additive mapping T : G → E.
(ii) If G = (R, ‖ · ‖1) with the β-homogeneous norm ‖ · ‖1 = | · |β and

E = (R, ‖ · ‖2) with the Euclidean metric ‖ · ‖2 = | · |, then

‖f(x + y)− f(x)− f(y)‖2 ≤ ε(‖x‖
1
β

1 + ‖y‖
1
2β

1 )

for any x, y ∈ R, however

sup




‖f(x)− T (x)‖2

‖x‖
1
β

1

: x ∈ R\{0}


 = ∞

for each additive mapping T : G → E.
(iii) If G = (R, ‖ · ‖1) with the β1-homogeneous norm ‖ · ‖1 = | · |β1 and

E = (R, ‖ · ‖2) with the β2-homogeneous norm ‖ · ‖2 = | · |β2 , then

‖f(x + y)− f(x)− f(y)‖2 ≤ εβ2(‖x‖
β2
β1
1 + ‖y‖

β2
2β1
1 )

for any x, y ∈ R, however

sup




‖f(x)− T (x)‖2

‖x‖
β2
β1
1

: x ∈ R\{0}


 = ∞

for each additive mapping T : G → E.

Remark 3. Set µ = ε
8 . By using a similar proof as in the Theorem 3.1 for

Jensen’s equation, we can also get∣∣∣∣2f

(
x + y

2

)
− f(x)− f(y)

∣∣∣∣ ≤ ε(|x|+ |y| 12 ),

however

sup
{ |f(x)− T (x)|

|x| : x ∈ R\{0}
}

= ∞
for each additive mapping T : R→ R.

Thus, we can obtain a conclusion similar to remark 2 relating to Jensen’s
equation. This leads to the fact that the stability of Jensen’s equation does not
hold as long as one of the numbers p, q equals β, 1

β or β2
β1

(0 < β1, β2 ≤ 1).
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In summary, under the condition that G and E are F -spaces with certain
property, one is interested to prove that the Hyers-Ulam-Rassias stability is
fulfilled in three cases: (41) p, q < β2 (see [24]), (42) p, q > 1

β1
(see [24]) and

(43) β2 < p, q < 1
β1

(p, q 6= β2
β1

), but this fails as long as p or q is equal to
β2,

1
β1

or β2
β1

(0 < β1, β2 ≤ 1).
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[4] P. Gǎvrutǎ, A generalization of the Hyers-Ulam-Rassias stability of approximately ad-
ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.

[5] R. B. Holmes, Geometric Functional Analysis and Its Applications, Graduate Texts in
Mathematics, No. 24. Springer-Verlag, New York-Heidelberg, 1975.

[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.
U.S.A. 27 (1941), 222–224.

[7] D. H. Hyers, George Isac, and Th. M. Rassias, Stability of Functional Equations in
Several Variables, Birkhäuser, Boston, 1998.
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