Full-scale Soil Washing and Non-discharged Washing Water Treatment Process of Soil Contaminated With Petroleum Hydrocarbon

현장규모의 유류오염 토양세척 및 무방류 세척 유출수 처리 공정

  • Seo, Yong-Sik (Alpha Environmental Engineering Co., Ltd.) ;
  • Choi, Sang-Il (Department ofEnvironmental Engineering, Kwangwoon University) ;
  • Kim, Jong-Min (Department ofEnvironmental Engineering, Kwangwoon University) ;
  • Kim, Bo-Kyung (Department ofEnvironmental Engineering, Kwangwoon University) ;
  • Kim, Sung-Gyoo (Department ofEnvironmental Engineering, Kwangwoon University) ;
  • Park, Sang-Hean (Department ofEnvironmental Engineering, Kwangwoon University) ;
  • Ju, Weon-Ha (Department ofSoil and Groundwater, Environmental Management Corportion)
  • 서용식 ((주)알파환경엔제니어링) ;
  • 최상일 (광운대학교 환경공학과) ;
  • 김종민 (광운대학교 환경공학과) ;
  • 김보경 (광운대학교 환경공학과) ;
  • 김성규 (광운대학교 환경공학과) ;
  • 박상헌 (광운대학교 환경공학과) ;
  • 주원하 (환경관리공단 토양지하수사업처)
  • Published : 2009.02.28

Abstract

A non-discharged system of sequentially physico-chemical water treatment was used to treat the contaminated water produced from washing system of soils according to full-scale soil washing. After washing the TPH contaminated soils, the remaining concentrations of COD$_{Mn}$, SS, and n-hexane were analyzed for each compartment to estimate the treatment efficiencies of non-discharged system. Three times of sampling events were conducted for 4 different compartments (sediment tank, flocculation tank, oil/water separator, and process-water tank). In addition, soil washing efficiencies and concentrations of each parameter (COD$_{Mn}$, SS, and n-hexane) for process-water tank were analyzed for about 8 months. As results, the average efficiency of soil washing was high to have 95.9%, regardless of the condition of TPH contamination level for soils, as well as the concentrations of COD$_{Mn}$, SS, and n-hexane in the process-water tank were below the regulation limits of the Water Environmental Conserveation Act. Accordingly, the full-scale washing treatment system in this study could make the washing water 100% recycled which lead the system to be environmentally-friendly and economical.

현장규모의 유류오염 토양세척에 따른 세척 유출수를 처리하기 위해 다단계 물리화학적 무방류 수처리시스템을 이용하였다. 오염토양세척 후 세척토양과 세척수 처리효율을 평가하기 위해 단위공정별 잔류하는 TPH(세척토양), COD$_{Mn}$, SS, n-hexane을 분석하였다. 세척 유출수 시료채취지점은 침사지,응집 침전조 그리고 유수분리조의 유출수,공정수,저장조 유입수로 4곳의 시료채취 지점에서 총 3회에 걸쳐서 실시하였다. 또한 약8개월간의 토양세척 및 공정수 저장조의COD$_{Mn}$, SS, 그리고 n-hexane을 분석하였다. 그결과, 오염토양의 농도조건과 상관없이 오염토양의 세척효율이 평균95.9%로 높았고, 수처리 공정 최종 방류구인 공정수 저장수의 COD$_{Mn}$, SS, 그리고 n-hexane가 수질환경보전법상 청정지역 방류수질기준 미민으로 검출되었다. 현장규모의 토양 세척수 처리시스템은 세척수를 100%세척공정수로 재이용하여 환경친화적이고 경제적인 토양세척 처리공법이 될 수 있음을 시사하고 있다.

Keywords

References

  1. 공준, 최상일, 1998, 유류 오영토양복원을 위한 포양세척장비의 적용성 연구, 한국토양환경학회지, 3(3), 109-116
  2. 최상일, 1997, 소수성 유기물 유기오염물질로 오염된 토양에 대한 혼합계면활성제를 이용한 토양세척기법의 적용성 연구, 대한지하수환경학회지, 4(2), 103-108
  3. 한국지하수토양학회, 2003, 토양환경공학, 211-274
  4. 환경부, 2007, 수질환경공정시험방법
  5. 환경부, 2007, 수질 및 수생태계 보전에 관한법률
  6. 환경부, 2008, 토양오염공정시험기준
  7. 환경부, 2008, 토양환경보전법
  8. Alexander, M, 1977, Introduction to Soil Microbiology, 2nd ed., John Wiley & Sons, Inc., p. 219-222
  9. Bhandari, A., Novak, J. T., and Dove, D. C., 2000, Effect of soil washing on petroleumhydrocarbon distribution on sand surfaces, J. Haz. Sub. Res, 2(7), 1-13
  10. Domenic, G, 1993, Hazardous waste Site remediation source control, lewis publishers, USA,G-Chemical Extraction/Soil Washing, p. 18-38
  11. Feng, D., Lorenzen, L., Adrich. C., and Mare, P.W, 2001, ExSitu diesel contaminated soil washing with mechanical methods. Minerals Engineering, 14, 1093-1100 https://doi.org/10.1016/S0892-6875(01)00114-5
  12. Menezes, F.M., Amal, R. and Luketina, D., 1996, Removal of particles using coagulation and flocculation in a dynamic separator, Powder Technology, 88, 27-31 https://doi.org/10.1016/0032-5910(96)03098-7
  13. Schwarz, S., Jaeger, W., Paulke, B.-R., Bratskaya, S., Smolka, N. and Bohrisch, J., 2007, Cationic flocculants carrying hydrophobic functionalities, applications for solid/liquid separation, J. Phys. Chem. B 111, 8649-8654 https://doi.org/10.1021/jp070358i
  14. West, C.C. and Harwell, J.F., 1992, Surfactant and subsurface remidaition, Environ. Sci. Technol, 26(12), 2324-2330 https://doi.org/10.1021/es00036a002
  15. William, C. and Anderson, P.E., 1993, Innovative site remediation technology soil washing /soil flushing, American Academy of Environmental Engineers, 3, p. 4.3