Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide

망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구

  • Lee, Seung-Hwan (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Choi, Yong-Ju (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Chung, Jae-Shik (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Nam, Taek-Woo (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Young-Jin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Nam, Kyoung-Phile (Department of Civil and Environmental Engineering, Seoul National University)
  • 이승환 (서울대학교 건설환경공학부) ;
  • 최용주 (서울대학교 건설환경공학부) ;
  • 정재식 (서울대학교 건설환경공학부) ;
  • 남택우 (서울대학교 건설환경공학부) ;
  • 김영진 (서울대학교 건설환경공학부) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Published : 2009.02.28

Abstract

The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

생물체내에 내분비계 기능을 방해하고 생식능력 감소, 암 등을 유발하는 내분비계장애물질이 상수나 폐수, 지표수, 토양 등에서 검출이 증가하는 추세이다. 본 연구에서는 토양 내 내분비계장애물질을 산화공유결합반응을 유도, 토양 유기물화 시켜 제거하기 위하여 망간 산화물인 버네사이트를 촉매로 이용하였다. 수산화 작용기를 갖는 내분비계장애물질인 bisphenol A, 2,4-dichlorophenol 및 17${\beta}$-estradiol을 각각 50, 100, 1.5 mg/L의 농도로 하여 수용액 상에서의 버네사이트 촉매 반응을 관찰한 결과, 모두 60분 이내에 99% 이상 제거되었다. 특히 bisphenol A는 5분 내에 96%이상 제거되는 등 가장 높은 제거효율을 나타냈다. 또한 산화공유결합반응은 버네사이트 표면에서 일어나는 반응으로 버네사이트의 양, 즉 반응 표면적이 넓어질수록 일차반응속도상수가 선형적으로 증가함을 확인하였다. 토양 슬러리 상에서의 각 물질의 반응성을 확인한 결과, 수용액상보다 빠르게 변환되었는데, 이는 버네사이트에 의해 생성된 페녹시 라디칼이 토양유기물과 교차결합하여 더욱 빠르게 제거되었기 ��문으로 판단된다. 이러한 수용액 및 토양에서의 빠른 반응으로 비추어 볼때, 버네사이트를 이용한 유기물화 기술은 수용액 뿐만 아니라 토양 내 내분비계장애물질의 효과적인 처리 방법이 될 것으로 보인다.

Keywords

References

  1. 국립환경과학원, 2005, 내분비계장애물질의 이해
  2. 국립환경과학원, 2006, 내분비계장애물질환경 중 잔류실태조사
  3. 임동민, 강기훈, 신현상, 2006, 망간산화물을 이용한 1-Naphthol의 산화제거 연구, 대한환경공학회지, 28, 535-541
  4. Anderson, D.W. and Paul, E.A., 1984, Organo-mineral complexes and their study by radiocarbon dating, Soil Sci. Soc. Am. J., 48, 298-301 https://doi.org/10.2136/sssaj1984.03615995004800020014x
  5. Balesdent, J., Wagner, G.H., and Mariotti, A., 1988, A., Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance, Soil Sci. Soc. Am. J. 52, 118-124 https://doi.org/10.2136/sssaj1988.03615995005200010021x
  6. Bollag, J.-M. 1992, Decontaminating soil with enzymes, Environ. Sci. Technol., 26, 1876-1881 https://doi.org/10.1021/es00034a002
  7. Champbell, C.G., Borglin, S.E., Green, F.B., Grayson, A., Wozei, E., and Stringfellow, W.T., 2006, Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review, Chemosphere, 65, 1265-1280 https://doi.org/10.1016/j.chemosphere.2006.08.003
  8. Dec, J. and Bollag, J.-M., 1995, Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling, Environ. Sci. Technol., 29, 657-663 https://doi.org/10.1021/es00003a012
  9. Dec, J., Haider, K., and Bollag, J.-M., 2003, Release of substituents from phenolic compounds during oxidative coupling reactions, Chemosphere, 52, 549-556 https://doi.org/10.1016/S0045-6535(03)00236-4
  10. Jung J.-W., Lee, S., Ryu, H., Nam, K., and Kang, K.-H., 2008, Enhanced reactivity of hydroxylated polycycIic aromatic hydrocarbons to birnessite in soil: reaction kinetics and nonextractable residue formation, Environ. Toxicol. Chem., 27, 1031-1038 https://doi.org/10.1897/07-395.1
  11. Kang, K.-H., Lim, D.-M., and Shin, H., 2006, Oxidative-coupling reaction of TNT reduction products by manganese oxide, Water Res., 40, 903-910 https://doi.org/10.1016/j.watres.2005.12.036
  12. Li, X.D. and Schwartz, F.W., 2004, DNAPL remediation with in situ chemical oxidation using potassium permanganate: part I. mineralogy of Mn oxide and its dissolution in organic acids, J Contam. Hydrol., 68, 39-53 https://doi.org/10.1016/S0169-7722(03)00144-X
  13. McKenzie, R.M., 1971, The synthesis of bimessite, crptomelane, and some other oxides and hydroxides of manganese, Mineral. Mag., 38, 493-502 https://doi.org/10.1180/minmag.1971.038.296.12
  14. Pal, S., Bollag, J.-M., and Huang, P.M., 1994, Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions, Soil Biol. Biochem., 26, 813-820 https://doi.org/10.1016/0038-0717(94)90297-6
  15. Post, J.E., 1999, Manganese oxide minerals: crystal structures and economic and environmental significance, Proc. Nat. Acad Sci. U.S.A., 96, 3447-3454 https://doi.org/10.1073/pnas.96.7.3447
  16. Shindo, H. and Huang, P.M., 1982, Role of Mn (IV) oxide in abiotic transformation of humic substances in the environment, Nature, 298, 363-365 https://doi.org/10.1038/298363a0
  17. Stone, A.T., 1987, Reductive dissolution of Manganese (III/IV) oxides by substituted phenols, Environ. Sci. Technol., 21, 979-988 https://doi.org/10.1021/es50001a011
  18. Villalobos, M., Toner, B., Bargar, J., and Sposito, G, 2003, Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1, Geochim. Cosmochim. Acta, 67, 2649-2662 https://doi.org/10.1016/S0016-7037(03)00217-5
  19. Weber, Jr., W.J. and Huang, Q., 2003, IncIusion of persistent organic pollutants in humification process: direct chemical incorporation of phenanthrene via oxidative coupling, Environ Sci. Technol., 37, 4221-4227 https://doi.org/10.1021/es030330u
  20. Zhang, H. and Huang, C.-H., 2003, Oxidative transformation of triclosan and chlorophene by manganese oxides, Environ. Sci. Technol., 37, 2421-2430 https://doi.org/10.1021/es026190q
  21. Zhao, L., Yu, Z., Peng, P., Huang, W., Feng, S., and Zhou, H., 2006, Oxidation kinetics of phetachlorophenol by manganese dioxide, Environ. Toxicol. Chem., 25, 2912-2919 https://doi.org/10.1897/06-001R.1