Detection of Premature Ventricular Contraction Using Discrete Wavelet Transform and Fuzzy Neural Network

이산 웨이블릿 변환과 퍼지 신경망을 이용한 조기심실수축 추출

  • Published : 2009.03.30

Abstract

This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.

본 논문은 심전도(ECG) 신호로부터 조기심실수축(PVC)을 자동 탐지하는 방법으로 이산 웨이블릿 변환과 퍼지 신경망을 이용하는 방안을 제시하고 있다. 심전도 신호를 이산 웨이블릿 변환(DWT)으로 특징을 추출한 후, 퍼지 신경망으로 학습하여 정상 비트와 PVC 비트를 분류한다. 윈도우 크기는 R파를 기준으로 $-31/360{\sim}+32/360$초를 사용하며, 웨이블릿 변환은 d3, d4, d5의 웨이블릿 계수 14개를 사용한다. 퍼지 신경망은 가중 퍼지소속함수 기반 신경망을 사용한다. 본 논문은 벤치마킹 데이터로 MIT-BIH 부정맥 데이터베이스를 사용하여 Shyu 실험군(7개 레코드)에서는 전체 분류율에서 97.04% 보다 높은 99.91%의 신뢰성 있는 결과를 나타내었고, Inan 실험군(40개 레코드)에서는 각각 SE는 82.57% 보다 높은 84.67%, SP는 98.33% 보다 높은 99.39%, 전체 분류율은 96.85% 보다 높은 98.01%의 신뢰성 있는 결과를 나타내었다.

Keywords

References

  1. T. H. Linh, S. Osowski, and M. Stodolski, "On-Line Heart Beat Recognition Using Hermite Polynomials and Neuro-Fuzzy Network," IEEE Trans. on Instrumentation and Measurement, Vol.52, No.4, pp. 1224-1231, 2003. https://doi.org/10.1109/TIM.2003.816841
  2. S. Osowski and T. H. Linh, "ECG Beat Recognition Using Fuzzy Hybrid Neural Network," IEEE Trans. on Biomedical Engineering, Vol.48, No.4, pp. 1265-1271, 2001. https://doi.org/10.1109/10.959322
  3. R. Silipo and C. Marchesi, "Artificial Neural Networks for Automatic ECG Analysis," IEEE Trans. on Signal Processing, Vol.46, No.5, pp. 1417-1425, 1998. https://doi.org/10.1109/78.668803
  4. K. Minami, H. Nakajima, and T. Toyoshima, "Real-Time Discrimination of Ventricular Tachyarrhythmia with Fourier-Transform Neural Network," IEEE Trans. on Biomedical Engineering, Vol.46, No.2, pp. 176-185, 1999.
  5. L.-Y. Shyu, Y.-H. Wu, and W. Hu, "Using Wavelet Transform and Fuzzy Neural Network for VPC Detection from the Holter ECG," IEEE Transactions on Biomedical Engineering, Vol.51, Issue 7, pp. 1269-1273, 2004. https://doi.org/10.1109/TBME.2004.824131
  6. F. M. Ham and Soowhan Han. "Classification of Cardiac Arrhythmias Using Fuzzy ARTMAP," IEEE Trans. on Biomedical Engineering, Vol.43, No.4, pp. 425-430, 1996. https://doi.org/10.1109/10.486263
  7. C. Ramirez-Rodriguez and M. Hernandaz-Silveria, "Multi-Thread Implementation of a Fuzzy Neural Network for Automatic ECG Arrhythmia Detection," Proceedings In Computers in Cardiology 2001, pp. 297-300, 2001.
  8. O. T. Inan, L. Giovangrandi., G. T. A. Kovacs, "Robust Neural-network Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval features," IEEE Transaction on Biomedical Engineering, Vol.53, Issue 12, pp. 2507-2515, 2006. https://doi.org/10.1109/TBME.2006.880879
  9. J. S. Lim, D. Wang, Y.-S. Kim, and S. Gupta, "A Neuro-fuzzy Approach for Diagnosis of Antibody Deficiency Syndrome," Neurocomputing 69, Issues 7-9, pp. 969-974, 2006. https://doi.org/10.1016/j.neucom.2005.06.009
  10. J. S. Lim, T-W Ryu, H-J Kim, and S. Gupta, "Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions," LNCS 3614, pp. 811-820, Springer-Verlag, 2005.
  11. 임준식, “가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출,” 한국정보처리학회, 제11-B권, 제6호 pp. 717-722, 2004.
  12. J. S. Lim, "Finding Fuzzy Rules for IRIS by Neural Network with Weighted Membership Functions," International Journal of Fuzzy Logic and Intelligent Systems, Vol. 4, No. 2, pp. 211-216, 2004. https://doi.org/10.5391/IJFIS.2004.4.2.211
  13. J. S. Lim and S. Gupta, "Feature Selection Using Weighted Neuro-Fuzzy Membership Functions," The 2004 International Conference on Artificial Intelligence (IC-AI'04), Vol.1, pp. 261-266, 2004.
  14. R. Mark and G. Moody, MIT-BIH arrhythmia Database Directory, Mass. Inst. of Tech. (MIT), 1988.
  15. J. Pan and W.J. Tompkins, "A Real-Time QRS Detection Algorithm," IEEE Transactions on Biomedical Engineering, Vol. 32, No. 3, pp. 230-236, 1985. https://doi.org/10.1109/TBME.1985.325532
  16. P. Laguna, "New Electrocardiographic Signal Processing Techniques : Application to Long-term Records," Ph. D. dissertation, Science Faculty, University of Zaragoza, 1990.