A Physical-based Particle Method for Small Scale Feature in Multi-phase Fluid Simulation

다상 유체 시뮬레이션에서 격자 크기 이하의 미세한 특징 표현을 위한 물리기반 입자 기법

  • Published : 2009.03.30

Abstract

This paper presents a multi-phase fluid simulation that realistically represents small scale details. We achieve this by creating escaped particles based on physical methods. Escaped particles are the remained particles after correcting levelset. Generation of escaped particles in this paper differs from previous works; this fluid simulation is extended by adding lift force and drag force to positive escaped particles. And negative escaped particles represent droplet or splash effect; when they are merged into the negative levelset value, they affect the nodes' velocity (two-way coupling). This simulation that uses positive and negative escaped particles deals with detailed fluid motions dynamically in small scale.

본 논문에서는 물리기반 다상 유체 시뮬레이션의 정확성과 격자 크기 이하의 미세하고 사실적으로 아름다운 유체를 표현하기 위하여 이탈입자에 물리 기법을 추가하였다. 이탈 입자는 입자등위집합 기법에서 표시 입자들이 등위집합을 보정해 주고 남아 있는 입자들을 말하며, 본 논문은 이탈입자가 생성되는 방법을 기존과 다르게 하고, 미세한 공기방울을 표현한 양수의 이탈입자에서 견인력과 양력을 사용하여 유체 시뮬레이션을 확장하였다. 음수의 이탈입자는 또한 물방울과 스플래시 효과를 표현하였고, 등위집합의 음의 값과 합해지게 되면 그 노드의 속도에 영향을 주도록 설계하였다. 이렇게 양수의 이탈입자와 음수의 이탈입자를 사용하는 것은 유체 시뮬레이션에서 격자크기 이하의 상세함을 표현할 수 있고 역동적인 유체를 시뮬레이션 할 수 있게 한다.

Keywords

References

  1. Hong, J.-M., and Kim, C.-H., "Discontinuous fluids," ACM Trans Graph (SIGGRAPH Proc.), Vol.24, No.3, pp. 915-919, 2005.
  2. J. H. Kim, D. H Cha, B. J Chang, B. K Koo, and I. S Ihm, "Practicle Animation of Turbulent Splashing Water," Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2006.
  3. Mark Carlson, Peter J.Mucha, and Greg Turk, "Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid," ACM Transactions of Graphics(Proceedings of SIGGRAPH 2004), Vol.23, No.3, pp. 377-384, 2004.
  4. Foster, N., and Metaxas, D., "Realistic animation of liquids," Graphical Models and Image Processing, Vol.58, No.5, pp. 471-483, 1996. https://doi.org/10.1006/gmip.1996.0039
  5. Fedkiw, R., Stam, J., and Jensen, H., "Visual simulation of smoke," In Proc. of ACM SIGGRAPH 2001, pp. 15-22, 2001.
  6. Foster, N., and Metaxas, D., "Controlling fluid animation," In Comput. Graph Int., pp. 178-188, 1997.
  7. Foster, N., and Metaxas, D., "Modeling the motion of a hot, turbulent gas," In Proc. of SIGGRAPH 97, pp. 181-188, 1997.
  8. Stam, J., "Stable fluids," In Proc. of SIGGRAPH 99, pp121-128, 1999.
  9. Enright, D., Marschner, S., and Fedkiw, R, "Animation and rendering of complex water surfaces," ACM Trans. Graph, (SIGGRAPH Proc.), Vol.21, No.3, pp. 736-744, 2002.
  10. Foster, N., and Fedkiw, R., "Practical animation of liquids," In Proc. of ACM SIGGRAPH 2001, pp. 23-30, 2001.
  11. Hong, J.-M., and Kim, C.-H., "Animation of bubbles in liquid," Computer Graphics Forum(Eurographics 2003 Proceedings), Vol.22, No.3, pp. 253-262, 2003.
  12. Song, O.-Y., Shin, H.-C., and Ko, H.-S., "Stable but non-dissipative water," ACM Transactions on Graphics, Vol.24, No.1, pp. 81-97, 2005. https://doi.org/10.1145/1037957.1037962
  13. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Salto, T., Tanaka, K., and Ueki, H., "Realistic animation of fluid with splash and foam," Comp. Graph. Forum(Eurographics Proc.), Vol.22, No.3, pp. 391-400, 2003.
  14. Gingold R., and Monaghan J., "Smoothed particle hydrodynamics. theory and application to nonspherical stars," Monthly Notices of the Royal Astronomical Society, Vol.181, pp. 375, 1977. https://doi.org/10.1093/mnras/181.3.375
  15. Lucy L, "A numerical approach to the testing of the _ssion hypothesis," Astronomical Journal, Vol.82, pp. 1013, 1977. https://doi.org/10.1086/112164
  16. Reeves W. T., "Particle systems . a technique formodelling a class of fuzzy objects," In SIGGRAPH (1983), pp. 359-376, 1983.
  17. Miller G., and Pearce A, "Globular dynamics: A connected particle system for animating viscous fluids," Computers & Graphics, Vol.13, No.3, pp. 305-309, 1989. https://doi.org/10.1016/0097-8493(89)90078-2
  18. Premoze S., Tasdizen T., Bigler J., Lefohn A., and Whitaker R. T., "Particle-based simulation of fluids," Computer Graphics Forum, Vol.22, No.3, pp. 401-410, 2003. https://doi.org/10.1111/1467-8659.00687
  19. Reeves W. T., "Particle systems . a technique formodelling a class of fuzzy objects," In SIGGRAPH (1983), pp. 359-376, 1983.
  20. Steele K., Cline D., Egbert P. K., and Dinerstein J., "Modeling and rendering viscous liquids," Journal of Computer Animation and Virtual Worlds, Vol.15, No.3-4, pp. 183-192, 2004.
  21. Desbrun M. and Gascuel M.-P., "Smoothed particles: A new paradigm for animating highly deformable bodies," In Computer Animation and Simulation '96, pp. 61-76, 1996.
  22. MUller M., Charypar D., and Gross M., "Particle-based _uid simulation for interactive applications," In SIGGRAPH/Eurographics Symposium on Computer Animation(2003), pp. 154-159, 2003.
  23. Premoze S., Tasdizen T., Bigler J., Lefohn A., and Whitaker R. T., "Particle-based simulation of fluids," Computer Graphics Forum, Vol.22, No.3, pp. 401-410, 2003. https://doi.org/10.1111/1467-8659.00687
  24. D. Darmana, N.G. Deen, and J.A.M. Kuipers, "Parallelization of an Euler-Lagrange model using mixed domaln decomposition and a mirror domaln technique: Application to dispersed gas-liquid two-phase flow," Journal of Computational Physics, Vol.220, pp. 216-248, 2006. https://doi.org/10.1016/j.jcp.2006.05.011