DOI QR코드

DOI QR Code

Characteristics of high performance reinforced concrete barriers that resist non-deforming projectile impact

  • Dancygier, A.N. (Faculty of Civil and Environmental Engineering, National Building Research Institute, Technion - Israel Institute of Technology)
  • Received : 2008.03.25
  • Accepted : 2009.06.24
  • Published : 2009.07.30

Abstract

Current research and development of high performance concrete, together with study of phenomena that are pertinent to impact resistance, have lead to a new generation of barriers with improved properties to resist impact loads. The paper reviews major properties and mechanisms that affect impact resistance of concrete barriers as per criteria that characterize the resistance. These criteria are the perforation limit, penetration depth and the amount of front and rear face damage. From the long-known, single strength parameter that used to represent the barriers' impact resistance, more of the concrete mix ingredients are now considered to be effective in determining it. It is shown that the size and hardness of the aggregates, use of steel fibers and micro-silica have different effects on performance under impact and on the resistance. Additional pertinent phenomena, such as the rate and size effects, confinement and local versus global response, are pointed out with their reference to possible future developments in the design of impact resisting concrete barriers.

Keywords

References

  1. ACI 544.2R-89. (1989 Reapproved 1999), "Measurement of properties of fiber reinforced concrete"
  2. Almansa, E.M. and Cánovas, M.F. (1999), “Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles”, Cement Concrete Res., 29, 1807-1814 https://doi.org/10.1016/S0008-8846(99)00174-X
  3. Barr, P. (1990), Guidelines for the Design and Assessment of Concrete Structures Subjected to Impact, UK Atomic Energy Authority Safety and Reliability Directorate, London
  4. Bludau, C., Keuser, M.D. and Kustermann, A. (2006), "Perforation resistance of high-strength concrete panels", ACI Struct. J., 103(2), 188-195
  5. Corbett, G.G., Reid, S.R. and Johnson, W.J. (1996), "Impact loading of plates and shells by free-flying projectiles: A review", Int. J. Impact Eng., 18(2), 141-230 https://doi.org/10.1016/0734-743X(95)00023-4
  6. Dancygier, A.N. and Yankelevsky, D.Z. (1996), "High strength concrete response to hard projectile impact", Int. J. Impact Eng., 18(6), 583-599 https://doi.org/10.1016/0734-743X(95)00063-G
  7. Dancygier, A.N. and Yankelevsky, D.Z. (1999), "Effects of reinforced concrete properties on resistance to hard projectile impact", ACI Struct. J., 96(2), 259-167
  8. Dancygier, A.N., Yankelevsky, D.Z. and Jaegermann, C. (2007), "Response of high performance concrete plates to impact of non-deforming projectiles", Int. J. Impact Eng., 34(11), 1768-1779 https://doi.org/10.1016/j.ijimpeng.2006.09.094
  9. Dolce, M., Cardone, D., Moroni, C. and Nigro, D. (2007), "Dynamic response of a volcanic shelter subjected to ballistic impacts", Int. J. Impact Eng., 34, 681-701 https://doi.org/10.1016/j.ijimpeng.2006.01.002
  10. Dubey, A. and Banthia, N. (1998), "Influence of high-reactivity metakaoline and silica fume on the flexural toughness of high-performance steel fiber-reinfoced concrete", ACI Mat. J., 95(3), 284-292
  11. Elfahal, M.M., Krauthammer, T., Ohno, Beppu, T. M. and Mindess, S. (2005), "Size effect for normal strength concrete cylinders subjected to axial impact", Int. J. Impact Eng., 31, 461-481 https://doi.org/10.1016/j.ijimpeng.2004.01.003
  12. Forrestal, M.J., Altman, B.S., Cargile, J.D. and Hanchak, S.J. (1994), "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets", Int. J. Impact Eng., 15, 395-405 https://doi.org/10.1016/0734-743X(94)80024-4
  13. Forrestal, M.J., Frew, D.J., Hanchak, S.J. and Brar, N.S. (1996), "Penetration of grout and concrete targets with ogive-nose steel projectiles", Int. J. Impact Eng., 18(5), 465-476 https://doi.org/10.1016/0734-743X(95)00048-F
  14. Frew, D.J., Hanchak, S.J., Green, M.L. and Forrestal, M.J. (1998), "Penetration of concrete targets with ogivenose steel rods", Int. J. Impact Eng., 21(6), 489-497 https://doi.org/10.1016/S0734-743X(98)00008-6
  15. Frew, D.J., Forrestal, M.J. and Cargile, J.D. (2006), "The effect of concrete target diameter on projectile deceleration and penetration depth", Int. J. Impact Eng., 32, 1584-1594 https://doi.org/10.1016/j.ijimpeng.2005.01.012
  16. Gold, V.M., Vradis G.C. and Pearson J.C. (1996), "Concrete penetration by eroding projectiles: experiments and analysis", J. Eng. Mech., ASCE, 122(2), 145-152 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(145)
  17. Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization", Int. J. Impact Eng., 25, 869-886 https://doi.org/10.1016/S0734-743X(01)00020-3
  18. Haldar, A. and Hamieh, H. (1984), "Local effect of solid missiles on concrete structures", J. Struct. Div., ASCE,110(5) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)
  19. Hughes, G. (1984), "Hard missile impact on reinforced concrete", Nucl. Eng. Des., 77, 23-35 https://doi.org/10.1016/0029-5493(84)90058-X
  20. Jensen, J.J., Høiseth, K.V. and Hansen, E.A. (1993), "Ductility of high strength concrete at high rate loading", Proceedings 3rd Symposium: Utilization of High Strength Concrete, Lillehammer June, 241-250
  21. Kennedy, R.P. (1976), "A Review of procedures for the analysis and design of concrete structures to resistmissile impact effects", Nucl. Eng. Des., 37, 183-203 https://doi.org/10.1016/0029-5493(76)90015-7
  22. Krauthammer, T., Elfahal, M.M., Lim, J., Ohno, T., Beppu, M. and Markeset, G. (2003), "Size effect for highstrength concrete cylinders subjected to axial impact", Int. J. Impact Eng., 28, 1001-1016 https://doi.org/10.1016/S0734-743X(02)00166-5
  23. Li, Q.M. and Chen, X.W. (2003), "Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile", Int. J. Impact Eng., 28, 93-116 https://doi.org/10.1016/S0734-743X(02)00037-4
  24. Li, Q.M. and Meng, H. (2003a), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solids Struct., 40, 343-360 https://doi.org/10.1016/S0020-7683(02)00526-7
  25. Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2005), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32, 224-284 https://doi.org/10.1016/j.ijimpeng.2005.04.005
  26. Li, Q.M., Ye, Z.Q., Ma, G.W. and Reid, S.R. (2007), "Influence of overall structural response on perforation of concrete targets", Int. J. Impact Eng., 34, 926-941 https://doi.org/10.1016/j.ijimpeng.2006.03.005
  27. Li, Q.M., Lu, Y.B. and Meng, H. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete like materials based on split Hopkinson pressure bar tests Part II: Numerical Simulations", Int. J. Impact Eng., (in press) https://doi.org/10.1016/j.ijimpeng.2009.04.010
  28. Luo, X., Sun, W. and Chan, S.Y.N. (2000), "Characteristics of high-performance steel fiber-reinforced concrete subject to high velocity impact", Cement Concrete Res., 30, 907-914 https://doi.org/10.1016/S0008-8846(00)00255-6
  29. Maalej, M., Quek, S.T. and Zhang, J. (2005), "Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact", J. Mater. Civil Eng., ASCE, 17(2), 143-52 https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143)
  30. Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95(6),735-739
  31. Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, 2nd Edn. Pearson Education, Inc. Upper Saddle RiverNJ, p.358
  32. Mougin, J.P., Perrotin, P., Mommessin, M., Tonnelo, J. and Agbossou, A. (2005), "Rock fall impact on reinforced concrete slab: an experimental approach", Int. J. Impact Eng., 31, 169-183 https://doi.org/10.1016/j.ijimpeng.2003.11.005
  33. Park, S.W., Xia, Q. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation", Int. J. Impact Eng., 25, 887-910 https://doi.org/10.1016/S0734-743X(01)00021-5
  34. Reinhardt, H.W. (1987), "Simple relations for the strain rate influence of concrete. Darmstadt concrete", Ann. J. Conc. Conc. Struct., Vol. 2
  35. Riera, J.D. (1989), "Penetration, scabbing and perforation of concrete structures hit by solid missiles", Nucl. Eng. Des., 115, 121-131 https://doi.org/10.1016/0029-5493(89)90265-3
  36. Silling, S.A. and Forrestal, M.J. (2007), "Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets", Int. J. Impact Eng., 34(11), 1814-1820 https://doi.org/10.1016/j.ijimpeng.2006.10.008
  37. Sliter G.E. (1980), "Assessment of empirical concrete impact formulas", J. Struct. Div., ASCE, 106(5), 1023-1045
  38. Soroka, I. (1993), Concrete in Hot Environments, Elsevier Applied Science, London and New York, p.123
  39. Sukontasukkul, P., Nimityongskul, P. and Mindess, S. (2004), "Effect of loading rate on damage of concrete", Cement Concrete Res., 34, 2127-2134 https://doi.org/10.1016/j.cemconres.2004.03.022
  40. Sukontasukkul, P., Mindess, S. and Banthia, N. (2005), "Properties of confined fibre-reinforced concrete under uniaxial compressive impact", Cement Concrete Res., 35, 11-18 https://doi.org/10.1016/j.cemconres.2004.05.011
  41. Vossoughi, F., Ostertag, C.P., Monteiro, P.J.M. and Johnson, G.C. (2007), "Resistance of concrete protected by fabric to projectile impact", Cement Concrete Res., 37, 96-106 https://doi.org/10.1016/j.cemconres.2006.09.003
  42. Warren T.L., Fossum A.F. and Frew D.J. (2004), "Penetration into low-strength (23 MPa) concrete: Target characterization and simulations", Int. J. Impact Eng., 30, 477-503 https://doi.org/10.1016/S0734-743X(03)00092-7
  43. Weerheijm, J. and Van Doormaal, J.C.A.M. (2007), "Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests", Int. J. Impact Eng., 34, 609-626 https://doi.org/10.1016/j.ijimpeng.2006.01.005
  44. Williams M.S. (1994), "Modeling of local impact effects on plain and reinforced concrete", ACI Struct. J., 91(2),178-187
  45. Yan, H., Sun, W. and Chen, H. (1999), "The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete", Cement Concrete Res., 29, 423-426 https://doi.org/10.1016/S0008-8846(98)00235-X
  46. Yankelevsky, D.Z. (1997), "Local response of concrete slabs to low velocity missile impact", Int. J. Impact Eng.,19(4), 331-343 https://doi.org/10.1016/S0734-743X(96)00041-3
  47. Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31, 825-841 https://doi.org/10.1016/j.ijimpeng.2004.04.009
  48. Zhang, M., Wu, H.J. and Li, Q.M. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete like materials based on split Hopkinson pressure bar tests Part I: Experiments", Int. J. Impact Eng., (in press), https://doi.org/10.1016/j.ijimpeng.2009.04.010
  49. Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Impact Eng., 34(9), 1517-1534 https://doi.org/10.1016/j.ijimpeng.2006.10.012

Cited by

  1. Resistance of double-layer reinforced HPC barriers to projectile impact vol.67, 2014, https://doi.org/10.1016/j.ijimpeng.2014.01.001
  2. Assessment of residual deformation of rear steel plate in RC barriers subjected to impact of non-deforming projectiles vol.77, 2015, https://doi.org/10.1016/j.ijimpeng.2014.11.005
  3. Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.211
  4. Assessment of the perforation limit of a composite RC barrier with a rear steel liner to impact of a non-deforming projectile vol.64, 2014, https://doi.org/10.1016/j.ijimpeng.2013.10.002
  5. Resistance of slim UHPFRC targets to projectile impact using in-service bullets vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.10.002
  6. The use of RKPM meshfree methods to compute responses to projectile impacts and blasts nearby charges vol.7, pp.2, 2009, https://doi.org/10.12989/cac.2010.7.2.119
  7. Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.479
  8. High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations vol.40, pp.5, 2009, https://doi.org/10.12989/sem.2011.40.5.595
  9. Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.031