DOI QR코드

DOI QR Code

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao (Department of Mechanics, Huazhong University of Science and Technology) ;
  • Peng, Wenjie (Department of Mechanics, Huazhong University of Science and Technology) ;
  • Ge, Rui (Department of Mechanics, Huazhong University of Science and Technology) ;
  • Wei, Junhong (Department of Mechanics, Huazhong University of Science and Technology)
  • Received : 2008.02.11
  • Accepted : 2009.02.05
  • Published : 2009.03.10

Abstract

The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Keywords

References

  1. Alibeigloo, A., Shakeri, M. and Morowat, A. (2007), "Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm", Struct. Eng. Mech., 25(6), 637-652 https://doi.org/10.12989/sem.2007.25.6.637
  2. ANSYS (2003). Ansys Theory Reference Manual, Release 8.0 Ansys Inc
  3. Bayandor, J., Scott, M.L. and Thomson, R.S. (2002), "Parametric optimisation of composite shell structures for an aircraft Krueger flap", Comput. Struct., 57, 415-423 https://doi.org/10.1016/S0263-8223(02)00109-5
  4. Chen, J.Q., Ge, R. and Wei, J.H. (2008), "Probabilistic optimal design of laminates by using the improved particle swarm optimization", Eng. Optimiz., 40(8), 695-708 https://doi.org/10.1080/03052150802010615
  5. Clerc, M. (1999), "The swarm and the queen: towards the deterministic and adaptive particle swarm optimization", Proceedings of the Congress on Evolutionary Computation, Washington DC, USA, IEEE Service Center Piscataway, NJ, 1951-1957 https://doi.org/10.1109/CEC.1999.785513
  6. Dong, Y., Tang, J., Zu, B. and Wang, D. (2005), "An application of swarm optimization to nonlinear programming", Comput. Math. Appl., 49(11-12), 1655-1668 https://doi.org/10.1016/j.camwa.2005.02.006
  7. Ferreira, J.M. and Chattopadhyay, A. (1995), "Development of a multiobjective optimization procedure for reducing edge delamination stresses in composite plates", Comput. Math. Appl., 26, 81-97 https://doi.org/10.1016/0898-1221(93)90332-P
  8. Ganguli, R. and Chopra, I. (1995), "Aeroelastic optimization of a helicopter rotor with composite coupling", J. Aircraft, 32(6), 1326-1334 https://doi.org/10.2514/3.46882
  9. Ganguli, R. and Chopra, I. (1996), "Aeroelastic optimization of a helicopter rotor with two-cell composite blades", AIAA J., 34(4), 835-841 https://doi.org/10.2514/3.13147
  10. Ganguli, R. and Chopra, I. (1997), "Aeroelastic tailoring of composite couplings and blade geometry of a helicopter rotor using optimization methods", J. Am. Helicopter Soc., 42(3), 218-228 https://doi.org/10.4050/JAHS.42.218
  11. Ge, R., Chen, J.Q. and Wei, J.H. (2007), "Reliability optimal design of composite materials based on the improved particle swarm optimization algorithm", J. Mech. Sci. Technol. (In Chinese), 26(2), 257-260
  12. Hasan, K., Murat, B. and Azim, E. (2003), "Design automation of a laminated armor for best impact performance using approximate optimization method", Int. J. Impact Eng., 29, 397-406 https://doi.org/10.1016/j.ijimpeng.2003.09.036
  13. Hossain, M.H., Jagarkal, S.G., Agonafer, D., Lulu, M. and Reh, S.(2007), "Design optimization and reliability of PWB level electronic package", J. Electron. Packaging, 129, 9-18 https://doi.org/10.1115/1.2429704
  14. Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments", Comput. Struct.,49, 65-75 https://doi.org/10.1016/S0263-8223(99)00126-9
  15. Kathiravan, R. and Ganguli, R. (2007), "Strength design of composite beam using gradient and particle swarm optimization", Comput. Struct., 81, 471-479 https://doi.org/10.1016/j.compstruct.2006.09.007
  16. Kayabasi, O. and Ekici, B. (2007), "The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method", Mater. Des., 28, 2269-2277 https://doi.org/10.1016/j.matdes.2006.08.012
  17. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", IEEE International Conference Neural Networks, 1942-1948
  18. Lindemann, J. and Becker, W. (2002), "The tendency for free-edge delamination in laminates and its minimization", Compos. Sci. Technol., 62, 233-242 https://doi.org/10.1016/S0266-3538(01)00214-7
  19. Marannano, G. and Mariotti, G.V. (2008), "Structural optimization and experimental analysis of composite material panels for naval use", Meccanica, 43(2), 251-262 https://doi.org/10.1007/s11012-008-9120-z
  20. Mittelstedt, C. and Becker, W. (2007), "Free-edge effects in composite laminates", Appl. Mech. Rev., 60, 217-245 https://doi.org/10.1115/1.2777169
  21. Muc, A. and Gurba, W. (2001), "Genetic algorithms and finite element analysis in optimization of composite structures", Comput. Struct., 54(2-3), 275-281 https://doi.org/10.1016/S0263-8223(01)00098-8
  22. Murugan, S. and Ganguli, R. (2005), "Aeroelastic stability enhancement and vibration suppression in a composite helicopter rotor", J. Aircraft, 42(4), 1013-1024 https://doi.org/10.2514/1.5652
  23. Murugan, M.S., Suresh, S., Ganguli, R. and Mani, V. (2007), "Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach", Struct. Multidiscip. Optimiz., 33(2), 131-146
  24. Naik, G.N., Gopalakrishnan, S. and Ganguli, R. (2008), "Design optimization of composites using genetic algorithms and failure mechanism based failure criterion", Comput. Struct., 83, 354-367 https://doi.org/10.1016/j.compstruct.2007.05.005
  25. Omkar, S.N., Mudigere, D., Naik, G.N. and Gopalakrishnan, S. (2008), "Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structure", Comput. Struct., 86, 1-14 https://doi.org/10.1016/j.compstruc.2007.06.004
  26. Paluch, B., Grediac, M. and Faye, A. (2008), "Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness", Comput. Struct., 83(3), 284-294 https://doi.org/10.1016/j.compstruct.2007.04.023
  27. Park, J.H., Hwang, J.H., Lee, C.S. and Hwang, W. (2001), "Stacking sequence design of composite laminates for maximum strength using genetic algorithms", Comput. Struct., 52(2), 217-231 https://doi.org/10.1016/S0263-8223(00)00170-7
  28. Peng, W.J. and Chen, J.Q. (2006), "Numerical evaluation of ultimate strengths of composites considering both in-plane damage and delamination", Key Eng. Mater., 324-325, 771-774
  29. Pipes, R.N. and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial extension", J. Compos. Mater., 4, 538-548
  30. Rahul, Chakraborty, D. and Dutta, A. (2005), "Optimization of FRP composites against impact induced failure using island model parallel genetic algorithm", Compos. Sci. Technol., 65, 2003-2013 https://doi.org/10.1016/j.compscitech.2005.03.016
  31. Rao, A.R.M. and Arvind, N. (2007), "Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268 https://doi.org/10.12989/sem.2007.25.2.239
  32. Sancho, J. and Miravete, A. (2006), "Design of composite structures including delamination studies", Comput. Struct., 76, 283-290 https://doi.org/10.1016/j.compstruct.2004.11.011
  33. Shi, Y.H. and Eberhart, R. (1998), "Parameter selection in particle swarm optimization", Evolut Prog VII, Lecture Notes Comput Sci., 591-600 https://doi.org/10.1007/BFb0040810
  34. Sleight, D.W. (1999), "Progressive failure analysis methodology for laminated composite structures", NASA TP- 209107
  35. Suresh, S., Sujit, P.B. and Rao, A.K. (2007), "Particle swarm optimization approach for multi-objective composite box-beam design", Comput. Struct., 81, 598-605 https://doi.org/10.1016/j.compstruct.2006.10.008
  36. Takezono, S. Chen, J.Q., Tao, K., Nagata, M., Sugiyo, T. and Matoba, N. (2001), "The effect of loading direction and stacking sequence on the strength in quasi—isotropic CFRP laminates", Proceedings of IMMM2001, Japan, Mie Unhersitv Press
  37. Topal, U. and Uzman, U. (2006), "Optimal design of laminated composite plates to maximise fundamental frequency using MFD method", Struct. Eng. Mech., 24(4), 479-491 https://doi.org/10.12989/sem.2006.24.4.479
  38. Walker, M. and Smith, R.E. (2003), "A technique for the multiobjective optimization of laminated composite structures using genetic algorithms and finite element analysis", Comput. Struct., 62(1), 123-128 https://doi.org/10.1016/S0263-8223(03)00098-9

Cited by

  1. Tailoring the moduli of composites using hollow reinforcement vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.060
  2. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures vol.28, 2013, https://doi.org/10.1016/j.jmbbm.2013.08.001
  3. Conservative Failure Criteria for Optimal Design of Composite Structures Including Effect of Shear Loading vol.19, pp.8, 2012, https://doi.org/10.1080/15376494.2011.581408
  4. Analysis of adhesion strength of laminated copper layers in roll-to-roll lamination process vol.16, pp.9, 2015, https://doi.org/10.1007/s12541-015-0262-3
  5. Optimum Design of Composite Structures: A Literature Survey (1969–2009) vol.36, pp.1, 2017, https://doi.org/10.1177/0731684416668262
  6. Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method vol.51, pp.4, 2014, https://doi.org/10.12989/sem.2014.51.4.547
  7. Optimal Design of Cymbal Stack Transducer in a Piezoelectric Linear Actuator by Finite Element Method vol.2, pp.3, 2009, https://doi.org/10.1515/ehs-2015-0006
  8. Optimal design of damage tolerant composite using ply angle dispersion and enhanced bat algorithm vol.32, pp.8, 2020, https://doi.org/10.1007/s00521-019-04455-8