Development of Extracting Solution for Soil Chemical Analysis Suitable to Integrated Ion-selective Micro-electrodes

집적형 이온선택성 미세전극 센서에 적합한 토양화학 분석용 침출액 종 개발

  • Shin, Kook-Sik (College of Agriculture & Life Sciences at Hankyong Nat'l Univ.) ;
  • Lim, Woo-Jin (College of Agriculture & Life Sciences at Hankyong Nat'l Univ.) ;
  • Lee, Sang Eun (College of Agriculture & Life Sciences at Hankyong Nat'l Univ.) ;
  • Lee, Jae Seon (Department of Chemistry Kwangwoon Univ.) ;
  • Cha, Geun Sig (Department of Chemistry Kwangwoon Univ.)
  • 신국식 (한경대학교 농업생명과학대학) ;
  • 임우진 (한경대학교 농업생명과학대학) ;
  • 이상은 (한경대학교 농업생명과학대학) ;
  • 이재선 (광운대학교 자연과학대학) ;
  • 차근식 (광운대학교 자연과학대학)
  • Received : 2009.10.19
  • Accepted : 2009.12.02
  • Published : 2009.12.30

Abstract

The primary goal of this research was to develop an optimized analytical procedure for soil analysis based on ion-selective microelectrodes for agricultural purposes, which can perform on-site measurement of various ions in soil easily and rapidly. For the simple and rapid on-site diagnosis, an analysis of soil chemicals was performed employing a multicomponent-in-situ-extractant and an evaluation of ionselective microelectrodes were conducted through the regressive correlation method with a standard analytical approach widely employed in this area. Examination of sensor responses between various soil nutrient extractants revealed that 0.01M HCl and 1M LiCl provided the most ideal Nernstian response. However, 1M LiCl deteriorated the selective response for analytes due to high concentration (1M) of lithium cation. Thus, employing either 0.1M HCl as an extractant followed by 10 times dilution, or 0.01M HCl as an extractant without further dilution was chosen as the optimal extractant composition. A study of regressive correlation between results from ion-selective microelectrodes and those from the standard analytical procedure showed that analyses of $K^+$, $Na^+$, $Ca^{2+}$, and $NO_3{^-}$ showed the excellent consistency between two methods. However, the response for $NH_4{^+}$ suffered the severe interference from $K^+$. In addition, the selectivity for $Mg^{2+}$ over $Ca^{2+}$ was not sufficient enough since available ionophores developed so far do not provide such a high selectivity for $Mg^{2+}$. Therefore, as an agricultural on-site diagnostic instrument, the device in development requires further research on $NH_4{^+}$ analysis in the soil sample, development of $Mg^{2+}$-selective ionophore, and more detailed study focused on potassium, one of the most important plant nutrients.

본 연구는 현장에서 신속히 토양양분을 측정하기에 적합한 집적형 미세 이온선택성 전극을 토양화학성 분석에 이용하기 위하여, 이에 적합한 침출액의 종류와 양과 같은 분석방법을 개발 하는 데에 목적을 두었다. 대상 토양화학성들은 교환성 양이온들($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$)과 무기태 질소들($NH_4{^+}$, $NO_3{^-}$) 이었으며, 분석법 개발의 목표는 다 성분 동시침출액 종 선발에 있었다. 침출액 자체에 존재하는 화학종들은 이온간 방해작용으로 이온선택성 전극의 분석능에 영향을 미친다. 순수 용액 내에서는 0.01M HCl 과 1M LiCl 이 모든 분석대상 화학종과 그들의 존재 농도범위($10^{-1}M{\sim}10^{-4}M$)에 대하여 가장 Nernst 이론값에 근접하였다. 그러나 실제 토양 침출용액에서 1M LiCl은 고농도(1M)의 $Li^{+}$ 존재로 말미암아 분석대상 화학성분의 선택성이 현저히 낮아짐을 알 수 있었다. 반면에, 0.1M HCl로 침출하여 10배 희석 측정하거나 또는 0.01M HCl로 직접 침출하여 측정하는 것은 표준분석 방법과 고도의 유의성이 있는 상관관계를 보이므로 최적 분석 방법으로 밝혀졌다. 토양에 대하여 집적형 이온선택성 미세 전극을 사용한 분석치와 표준분석법 분석치의 사이의 회귀상관에서는 $K^+$, $Na^+$, $Ca^{2+}$, $NO_3{^-}$가 매우 우수한 회귀상관 관계를 보였다. 그러나 $NH_4{^+}$이온은 $K^+$이온과 혼재할 때 $K^+$이온의 간섭으로 매우 낮은 선택성을 나타내었다. 또한, $Mg^{2+}$이온은 현재까지 이온선택성 막을 위한 최적의 Ionophore(이온투과 담체)가 개발되어 있지 않아 분석의 어려움이 있었다.

Keywords

References

  1. Adamchuk, V. I., J. W. Hummel, M. T. Morgan, and S. K.Upadhyaya. 2004. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture. 44: 71-91 https://doi.org/10.1016/j.compag.2004.03.002
  2. Artigas, J., A. Beltran, C. Jimenez, A. Baldi, R. Mas, C. Dominguez, and J. Alonso. 2001. Computers and Electronics in Agriculture.31: 281-293 https://doi.org/10.1016/S0168-1699(00)00187-3
  3. Kim, M. S., J. H. Yoon J. H., and H. K. Kwak. 2004. Selection of simultaneous soil extracting method for soil analysis to apply for ICP. p. 301-307 in Annual Report of National Institute of Agricultural Science and Technology.(in Korean)
  4. National Institute of Agricultural Science and Technology. 2000. Soil Analytical Methods.(in Korean)
  5. 정종배 등. 2006. 토양학. 향문사. pp. 192-193.
  6. Bakker, E. and Q. Yu. 2006. Electrical sensors. Analytical Chemistry. 78(12): 3965-3983 https://doi.org/10.1021/ac060637m
  7. Bakker, E., E. Pretsch, and P. Buhlmann. 2000. Selectivity of potentiometric ion sensors. Anal. Chem. 72(6): 1127-1133 https://doi.org/10.1021/ac991146n
  8. Benjamin wolf. 1982. An improved universal extracting solution and its use for diagnosing soil fertility. Commun. soil Sci. Plant Anal. 13(12): 1005-1033 https://doi.org/10.1080/00103628209367331
  9. Daniel C. Harris. 1997. Quantitative Chemical Analysis. Freedom Academy Publishing. Co., pp. 393-396
  10. Hong S. D. and H. -T. Park. 2000. The test strip reflectometer method as a quick test procedure for soil nitrate nitrogen. Kor. J.Soil Sci. & Fert. 33(5): 369-375
  11. Kim, M. S., T. S. Park, and S. I. Cho. 2007. Application of Ionselective electrodes to measure ionic concentration of macronutrients in Hydrophonics. J. of Biosystems Eng. 32(1): 37-43.(in Korean) https://doi.org/10.5307/JBE.2007.32.1.037
  12. Kim, I. J., J. W. Hummel, and S. J. Birrel. 2006. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Trans. ASABE 49(3): 597-606 https://doi.org/10.13031/2013.20476
  13. Lee, H. L. 1986. Ion-selective electrodes. The Magazine of the IEEK 13(1): 36-43(한국어)
  14. Lee, S. E. and Cha, G. S. 2006. Micro-chemical sensors for determining the agricultural water quality. International Symposium for Water Management, KSAE pp. 111-130
  15. McIntosh, J. L. 1969. Bray and Morgan Soil test extractants modified for testing acid soils from different parent material.Agron. J. 61: 259-265 https://doi.org/10.2134/agronj1969.00021962006100020025x
  16. Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na and NH4. North Carolina Soil Testing Division(Mimeo), Releigh, N. C.
  17. Mehlich, A 1978 New Extraction for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc, Commun. Soil Sci. Plant Anal. 9(6): 477-492 https://doi.org/10.1080/00103627809366824
  18. Mehlich, A. 1984. Mehlich III soil test extractant : A modification of Mehlich II extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416 https://doi.org/10.1080/00103628409367568
  19. Morf, W. E. 1981. The principles of ion-selective electrodes and of membrane transport. Elsevier Science Publishing Co. Amsterdam
  20. Morgan, M. F. 1941. Chemical soil diagnosis by the universal soil testing system. Conn. Agric. Sta. Bul. 450
  21. Shim, J. H., I. S. Jeong, M. H. Lee, H. P. Hong, J. H. On, K. S. Kim,H. -S, Kim, B. H. Kim, G. S. Cha, H. Nam. 2004. Ion-selective electrodes based on molecular tweezer-type neutral carriers.Talanta. 63: 61-71 https://doi.org/10.1016/j.talanta.2003.12.050
  22. Wang, J. 2002. Portable electrochemical systems. Trends in Anal.Chem. 21(4): 226-232 https://doi.org/10.1016/S0165-9936(02)00402-8