Neutralization of Acidity and Ionic Composition of Rainwater in Taean

태안지역 강우의 산성도 중화 및 화학성 평가

  • 이종식 (농촌진흥청 국립농업과학원) ;
  • 김민경 (농촌진흥청 국립농업과학원) ;
  • 박성진 (농촌진흥청 국립농업과학원) ;
  • 최철만 (농촌진흥청 국립농업과학원) ;
  • 정태우 (태안군농업기술센터) ;
  • 정임영 (태안군농업기술센터)
  • Received : 2009.08.05
  • Accepted : 2009.08.28
  • Published : 2009.10.30

Abstract

The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October were investigated at Taean in 2007. Also, to estimate the contribution of ions on its acidity, ion composition characteristics and neutralization effects by cation ions were determined. The ion balance between cations and anions values showed high correlation. The mean values of pH and EC were 4.9 and $32.9{\mu}S\;cm^{-1}$, respectively. The EC of rainwater showed seasonal characteristic, which was $91.4{\mu}S\;cm^{-1}$ with relatively low rainfall compared with other monitoring periods. $Na^+$ was the main cation followed by $NH_4{^+}$ > $Ca^{2+}$ > $H^{+}$ > $Mg^{2+}$ > $K^+$. Among these ions, $Na^{+}$ and $NH_4{^+}$ covered over 70% of total cations. In the case of anion, the order was $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^{-}$. The mean value of sulfate, which is main anion component in the samples was $152.1{\mu}eq\;L^{-1}$. Also, 90% of soluble sulfate in rainwater was $nss-SO_4{^{2-}}$(non-sea salt sulfate). With fractional acidity and theoretical acidity of rainwater samples, $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity.

최근 급속한 산업화가 진행되고 있는 중국의 편서풍 영향 하에 위치한 우리나라의 경우에는 장거리 이동에 따른 강우의 산성도 변화 및 예상되는 피해에 대한 대책 마련을 위하여 강우의 화학성에 대한 지속적인 모니터링이 필요하다. 태안지역 강우의 화학적 특성을 알아보기 위하여 2007년 4월부터 10월까지 19점의 빗물을 채수하여 pH 및 화학적 성분조성을 조사하였다. 강우량을 고려한 가중평균(volume-weighted mean) 이온농도 변화와 알카리성 물질들에 의한 빗물의 산성도 중화를 평가한 결과는 다음과 같다. 조사기간 중 평균 pH값은 4.9를 보였다. 빗물의 EC는 조사기간 평균 $32.9{\mu}S\;cm^{-1}$을 나타냈으며, 월별로는 9월에 $9.7{\mu}S\;cm^{-1}$로 조사기간 중 가장 낮은 값을 보였으며, 강우량이 가장 적었던 4월에 $91.4{\mu}S\;cm^{-1}$의 높은 수치를 나타내어 강우량 분포에 따른 EC의 계절적 특성을 보였다. 빗물의 조성에서 양이온 구성은 $Na^+$> $NH_4{^+}$ > $Ca^{2+}$ > $H^+$ > $Mg^{2+}$ > $K^+$의 순이었으며, $Na^+$$NH_4{^+}$가 전체 양이온 함량의 70% 이상을 차지하였다. 음이온은 $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^{-}$ 순으로 $SO_4{^{2-}}$가 약 56%를 차지하였다. Sulfate의 조사기간 중 평균 함량은 $152.1{\mu}eq\;L^{-1}$ 이었다. 총 sulfate 함량 중 비해염 sulfate $(nss-SO_4)^-$ 함량은 평균 90%로 빗물 중에 함유된 sulfate의 대부분이 인위적인 발생원에서 기인되었다. 또한, 강우 산성도의 중화 정도를 알아보기 위하여 평가한 fractional acidity (pAi) 및 theoretical acidity ($pH_{the}$.) pH를 비교한 결과 1:1 직선의 오른쪽으로 분포되어 있음에 따라 본 조사기간 강우의 산성도가 빗물에 포함된 각종 알카리 물질들에 의해 중화되었음을 보였다.

Keywords

References

  1. Charron, A., H. Plaisance, S. Sauvage, P. Coddeville, J. C. Galloo, and R. Guillerm. 2000. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France. Atmospheric Environment 34:3665-3674 https://doi.org/10.1016/S1352-2310(00)00096-0
  2. Christian, E.J. 1963. Air chemistry and radioactivity. p. 327-330. Academic Press, England
  3. Contardi, V., E. Franceschi, S. Bosio, G. Zanicchi, D. Palazzi, L. Cortessogno, and L. Gaggero. 2000. On the conservation of architectural artistic handwork of the 'Pietra di Finale'. J. of Cultural Heritage 2:83-90
  4. Cronan, C.S., and C.L. Schofield. 1979. Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the Northeast. Science 204(20):304-306 https://doi.org/10.1126/science.204.4390.304
  5. Fujita, S.I., A. Takahashi, J.H. Weng, L.F. Huang, H.K. Kim, C K. Li, F.T. Huang, and F.T. Jeng. 2000. Precipitation chemistry in East Asia. Atmospheric Environment 34:525-537 https://doi.org/10.1016/S1352-2310(99)00261-7
  6. Galloway, J.N., D. Zhao, J. Xiong, and G.E. Likens. 1987. Acid rain: China, United States, and a remote area. Science 236:1559-1562 https://doi.org/10.1126/science.236.4808.1559
  7. Hara, H., 1996: Acid deposition chemistry in Japan. p. 7-17. Strategy for air pollution control in east asia, Japan
  8. Jakobowicz, J.M., 1994: Acid rain-An issue for regional cooperation. p. 129-156. Gordon & Breach Science Publishers, USA
  9. Johnston, D.W. and G.E. Taylor. 1989. Role of air pollution in forest decline in estern north America. Water, Air, and Soil Pollution 48:21-43
  10. Lee, J.S., B.Y. Kim, K.D. Woo, and G.B. Jung. 1993. Study on histological pertubations of leaves of sesame after exposure to simulated acid rain. Korean J. of Soil Sci. and Fert. 26(4):308-313. (in Korean with English abstract)
  11. Lee, J.S., G.B. Jung, J.D. Shin, and J.H. Kim. 2004. Chemical properties of rainwater in Suwon and Taean area during farming season. Korean Journal of Agricultural and Forest Meteorology 6(4):250-255. (in Korean with English abstract)
  12. Lee, J.S., G.B. Jung, J.H. Kim, W.I. Kim, and J.T. Lee. 2007a. Characteristics of ionic composition of rainwater in Suwon.Korean J. of Soil Sci. and Fert. 40(2):151-155. (in Korean with English abstract)
  13. Lee, J.S., G.Y. Kim, J.T. Lee, K.Y. Lee and B.Y. Park. 2007b. Characteristics of ionic composition of rainwater in Taean. Korean Journal of Agricultural and Forest Meteorology 9(1):49-54. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.1.049
  14. Lee, J.S., and K.S. Lee. 2000. Neutralization Assessment of NH4+ and Ca2+ on Acidity of Rainwater in Korea. Korean Journal of Environmental Agriculture 19(1):72-74. (in Korean with English abstract)
  15. Lee, J.S., Y.K. Jung, and K.S. Lee. 1999. Chemical composition of rainwater in Taean area. Korean Journal of Environmental Agriculture 18(3):204-208. (in Korean with English abstract)
  16. Likens, G.E., J.N. Galloway, and T.J. Butler. 1979. Acid rain. Scientific American 241(4):39-47
  17. Okochi, H., H. Kameda, S. Hasegawa, N. Saito, K. Kubota, and M.Igawa. 2000. Determination of concrete structures by acid deposition - An assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmospheric Environment 34:2937-2945 https://doi.org/10.1016/S1352-2310(99)00523-3
  18. Park, S.U., Y H. Lee, and H.J. In. 2000. Estimation of wet deposition of sulfate using routinely available meterological data and air-monitored data in Korea. Atmospheric Environment 34:3249-3258 https://doi.org/10.1016/S1352-2310(00)00099-6
  19. Peart, M.R. 2000. Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong. Chemosphere 41, 25-31 https://doi.org/10.1016/S0045-6535(99)00386-0
  20. Rinallo, C. 1992. Effects of acidity of simulated rain on the fruiting of 'summerred' apple trees. Journal of Environmental Quality 21, 61-68 https://doi.org/10.2134/jeq1992.21161x
  21. Scorer, R.S. 1994. Long distance transport. Acid rain, p. 1-34. Gordon & Breach Science Publishers, USA
  22. Taniyama T. and H. Saito. 1981. Effects of acid rain on apparent photosynthesis and grain yield of wheat, barley and rice plant. Report of Environmental Science Mie University 6:87-101
  23. Takuya, K., K. Yoshishisa, and N. Keiichi. 1992. The effects of simulated acid rain on the uptake of mineral elements in soybean plants. Journal of Agricultural Meteorology 48(1):11-18 https://doi.org/10.2480/agrmet.48.11