The Influence of Different Adaptation Substrates on Denitrification Rate of the Anaerobic Sludge

적응기질 종류에 따른 혐기성 슬러지의 탈질속도

  • Park, Sang-Min (Center for Environmental technology Research, Korea Institute of Science and Technology(KIST)) ;
  • Jun, Hang-Bae (Dept. of Environmental Engineering, Chungbuk National University) ;
  • Park, Chan-il (Dept. of Environmental Engineering, Chungbuk National University) ;
  • So, Kyu-Ho (National Academy of Agricultural Science, Rural Development Administration(RDA)) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration(RDA))
  • 박상민 (한국과학기술연구원 환경기술연구단) ;
  • 전항배 (충북대학교 환경공학과) ;
  • 박찬일 (충북대학교 환경공학과) ;
  • 소규호 (농촌진흥청 국립농업과학원) ;
  • 박노백 (농촌진흥청 국립농업과학원)
  • Received : 2009.05.02
  • Accepted : 2009.06.08
  • Published : 2009.06.30

Abstract

Denitrification efficiency associated with incorporation of the diffrent carbon substrates with the anaerobic sludge was investigated. For this each kinetic constant such as methane reaction and specific denitrification rate (SDNR) were determined in each treated sludge. In the pure methanogenesis, the specific methanogenesis activity (SMA) value was the highest at $0.76COD/g\;VSS{\cdot}day$ when the acetate was incorporated with the anaerobic sludge which has already been adapted at consistent C/N ratio 5 for reatively higher denitrifier population. The anaerobic dinitrificaition and methanogenesis reaction were dependent on both the types of carbon substrate and sludge showing the higher denitrificaition reaction constant at $1.96hr^{-1}$ with incorporation of acetate with the anaerobic sludge at C/N ratio 5 than any other carbon sources examined. When the glucose was introduced as electron donor for the anaerobic sludge adapted with different carbon substrates the SDNR showed the highest value with the sludge adapted to glucose followed by the sludge adapted to piggery sludge and acetate.

본 연구에서는 혐기성 슬러지의 적응 기질에 따른 탈질능력을 관찰하고자 탄소기질로서 포도당 이외에 기질등을 사용하여 탈질 및 메탄반응의 변화 및 SDNR(Specific Denitrification Rate) 등을 관찰하였다. 순수 메탄생성 슬러지에서 아세테이트를 사용하였을 경우, SMA 값은 $0.76gCOD/g{\cdot}VSS{\cdot}day$로 가장 높았고, SDNR 측정결과 탈질균의 비율이 상대적으로 높은 C/N 비 5에 적응된 슬러지에서 아세테이트를 탄소기질로 사용하였을 경우에 가장 높은 $1.38g{\cdot}NO_3{^-}N/g{\cdot}VSS{\cdot}day$이었다. 혐기성 탈질반응 및 메탄 생성반응은 탄소기질 및 슬러지의 종류에 따라 영향을 받았고, C/N 비 5에 적응된 슬러지에서 다른 탄소기질보다 아세테이트를 사용하였을 경우에 탈질반응상수 값은 $1.96hr^{-1}$로 가장 높았다. 다양한 탄소기질에 적응된 혐기성 슬러지에 포도당을 전자공여체로 이용하여 비탈질속도(SDNR)를 측정한 결과 포도당, 축산폐수, 아세테이트 기질에 적응된 슬러지 순으로 나타났다. 탄소기질에 대한 미생물의 적응여부와 혐기성 소화공정 각 단계에서 성장하는 미생물군(bio-community)의 상호공생관계가 탈질 속도를 향상시킬 수 있는 것으로 나타났다.

Keywords

References

  1. Akunna J.C., C. Bizeau and R. Moletta 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Wat. Res. 27(8):1303-1312 https://doi.org/10.1016/0043-1354(93)90217-6
  2. Akunna, J.C., C. Bizeau, and R. Moletta, 1992. Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NOx ratio. Environ. Technol. 13:825-836 https://doi.org/10.1080/09593339209385217
  3. Akunna, J.C., C. Bizeau, and R. Moletta, 1994. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations: ammonification, denitrification and methanogenic activity. Environ. Technol. 15:41-49 https://doi.org/10.1080/09593339409385402
  4. APHA. 1999. Standard methods for the examination of water and wastewater. American Public Health Association. Washington, D. C
  5. Baloch, M.I., J. C. Akunna, and P. J. Collier, 2006. Carbon and nitrogen removal in a granular bed baffled reactor. Environ. Technol., 27:201-208 https://doi.org/10.1080/09593332708618634
  6. Bernet, N. N., Delgenes, J. C., Akunna, J. P, Delgenes, and R. Moletta. 2000. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Wat. Res., 34(2):611-619 https://doi.org/10.1016/S0043-1354(99)00170-0
  7. Cuervo-Lopez, F.M., F., Martinez, M., Gutierrez-Rojas, R.A., Noyola, J. Gomez, 1999. Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket(UASB) reactors. Wat. Sci. Tech., 40(8):123-130 https://doi.org/10.1016/S0273-1223(99)00617-4
  8. Garuti, G. 1992. Anaerobic-aerobic combined for the treatment of sewage with nutrients removal; The ANAMMOX process. Wat. Sci. Tech., 25(7):383-394
  9. Hanaki, D. and C. Polprasert, 1989. Contribution of Methanogenesis to Denitrification with an upflow filter. J. WPCF. 61(9):1604-1611
  10. Jorgensen, K.S. and J.M. Tiedje, 1993. Survival of denitrifiers in nitrate-free anaerobic environments. Appl. Environ. Microbiol., 59(10):3297-3305
  11. Kluber, D.H. and R. Conrad, 1997. Effect of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS microbiol., 25:301-378
  12. Lin Y.F. and K.C. Chen 1993. The Relationship between denitrifying Bacteria and Methanogenic Bacteria in a Mixed Culture System of Acclimated Sludge. Wat. Res., 28(12):1749-1759
  13. Lin Y.F. and K.C. Chen 1995. Denitrification and Methanogenesis in a Co-immobilized Mixed Culture System. Wat. Res., 29(1):35-43 https://doi.org/10.1016/0043-1354(94)00144-V
  14. Manuel, C., B., Nicolas, D. Jean-Philippe, and M. Rene, 1998. Effect of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiology Ecology, 25:271-276 https://doi.org/10.1111/j.1574-6941.1998.tb00479.x
  15. Mosquera-Corral, A., M., Sanchez, J.L., Campos, R. Mendez, and J.M. Lema, 2001. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Wat. Res. 35(2):411-418 https://doi.org/10.1016/S0043-1354(00)00288-8
  16. Park N.B., S.M., Park W.Y., Choi and H.B. Jun 2009. Methane production and nitrogen removal from wastewater in the TPAD coupled with BNR process. J. of Korean Society on Water Quality, 25(1):18-25
  17. Park S.M., H.B., Jun N.B., Park and G.H. Oh 2005. Simultaneous denitrification and methanogenesis at various NO3 --N/COD ratios in an USB reactor. J. of Korean Society of Environmental Engineers, 27(11):1174-1179
  18. Quevedo, M., E., Guynot, and L. Muxi, 1996. Denitrifying potential of methanogenic sludge. Biotechnol. Lett. 18(12):1363-1368 https://doi.org/10.1007/BF00129336
  19. Tilche, A., G., Bortone, G., Forner, M., Indulti, L. Stante, and O. Tesini, 1994. Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Wat. Sci. Tech., 30(12):405-414