The Effect of Gongjin-dan on Gliosis in Middle Cerebral Artery Occlusion (MCAO) Rats

공진단이 MCAO모델 흰쥐에서 gliosis 억제에 마치는 영향

  • Seong, Kee-Moon (Dept. of Oriental Medicine, Won-Kwang University, College of Oriental Medicine) ;
  • Hae, Rae-Kyong (Dept. of Oriental Medicine, Won-Kwang University, College of Oriental Medicine) ;
  • Song, Bong-Keun (Dept. of Oriental Medicine, Won-Kwang University, College of Oriental Medicine)
  • 성기문 (원광대학교 한의과대학 내과학교실) ;
  • 허래경 (원광대학교 한의과대학 내과학교실) ;
  • 송봉곤 (원광대학교 한의과대학 내과학교실)
  • Published : 2009.12.30

Abstract

Objectives : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis becomes a physical and a mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. This study was undertaken to examine the effect of the Gongjin-dan (GJD) on CD81 and GFAP expression and its pathway in the rat brain following middle cerebral artery occlusion (MCAO). Methods : In order to study ischemic injuries on the brain, infarction was induced by MCAO using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Also, c-Fos and ERK expression were measured to investigate the signaling pathway after GJD administration in MCAO rats. Results : Measuring the size of cerebral infarction induced by MCAO in the rat after injection of GJD showed the size had decreased. GJD administration showed pyramidal cell death protection in the hippocampus in the MCAO rat. GJD administration decreased GF AP expression in the MCAO rat. GJD administration decreased CD81 expression in the MCAO rat. GJD administration induced up-regulation of c-FOS expression compared with MCAO. GJD administration induced down-regulation of ERK expression compared with MCAO. Conclusion : We observed that GJD could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of a rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the regulation of c-Fos and ERK. These results suggest that GJD can be a candidate to regenerate CNS injury.

Keywords

References

  1. Broude E, Mcatee M, Kelley MS, Bregman BS. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurong after spinal cord injury. Exp Nerol. 1999;155:439-55.
  2. Eng LF, Reier PJ, Houle JD. Astrocyte activation and fibrou gliosis : Glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. Prog Brain Res. 1987;71:439-55. https://doi.org/10.1016/S0079-6123(08)61845-2
  3. Houle J. The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by tansplated fetal spinal cord tissue. J Neurosci Res. 1992;31:120-30. https://doi.org/10.1002/jnr.490310117
  4. Miros Pekny, Michael Nilsson. Astrocyte activation and reactive gliosis. Glia. 2005;50:427-34. https://doi.org/10.1002/glia.20207
  5. Dijkstra S, Duis S, Pans IM Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202(1):57-66. https://doi.org/10.1016/j.expneurol.2006.05.011
  6. Menet V, Gimenez Y, Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia. 2000;31(3):267-72. https://doi.org/10.1002/1098-1136(200009)31:3<267::AID-GLIA80>3.0.CO;2-N
  7. 김갑성, 김명동, 김윤범, 김장현, 김중호, 이원철, 임양근, 정찬길. 실용동서의학임상총서 3권. 서울: 도서출판정담; 2001, p. 22-30.
  8. 김영훈, 배만종. 공진단이 백서의 고지혈증 지질 대사에 미치는 영향. 東西醫學. 1989;14(2):61-78.
  9. 최금희, 박치상. 공진단의 성분 분석 및 항산화 작용에 미치는 영향. 大韓本草學會. 2007;22(2):51-633.
  10. 黃善美. 공진단이 CT105와 $\beta$-amyloid로 유발된 Alzheimer's disease 病態 모델에 미치는 영향. 대구한의대학교 대학원. 2004.
  11. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84-91. https://doi.org/10.1161/01.STR.20.1.84
  12. 김진호, 한태균. 재활의학. 서울: 군자출판사; 2003, p. 349-53.
  13. PH Horner, FH Gage. Regeneratiing the damaged central nervous system. Nature. 2000;407:963. https://doi.org/10.1038/35039559
  14. O'Callaghan JP. Assessment of neurotoxicology-use of glial fivrillary acidic protein as a biomarker. Biomedial and envionmental sciences. 1991:4:197-206.
  15. O'Callaghan JP. Assessment of neurotoxic using assays of neurin and glial localized proteins-chronology and critique. Neurotoxicology. New York: Ravin Press Ltd. ; 1992, p. 83-99.
  16. Barres BA, Chun LLY, Corey DP. Ion channels in certebrate glia, Annu Rev. Neurosci. 1990;13:441-74. https://doi.org/10.1146/annurev.ne.13.030190.002301
  17. Malhotra S, Shnitka T, Elbrink J. Reactive astrocyte-a review. Cytobios. 1990;61:133-60.
  18. Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M. Astrocytes and stroke: networking for survival? Neurochem Res. 2003;28(2):293-305. https://doi.org/10.1023/A:1022385402197
  19. Norenberg MD. Astrocytes responses to CNS injury. J Neuropathol Exp Neurol. 1994;53:213-20. https://doi.org/10.1097/00005072-199405000-00001
  20. Norenberg MD. Reactive astrocytosis. the Role of gloa in Neurotoxicity. 1996:93-107.
  21. O'Callaghan JP, Brinton R. McEwen BS. Glucocorticoids regulate the synthesis of glialfibrillary acidic protein in intact and adrenlectomized rats but do not affect its expression following brain injury. J Neurochem. 1991:57:860-9. https://doi.org/10.1111/j.1471-4159.1991.tb08230.x
  22. Vijayan VK, Lee YI, Eng LF. Increase in glial fibrillary acidic protein following neural trauma. Mol. Chem. Neuropathol. 1990:13:107-18. https://doi.org/10.1007/BF03159912
  23. Oren R, Takahashi S, Doss C, Hersey P. Biochem. Biophys Res Com. 1966:222:13-8.
  24. Dijkstra S, Geisert EJ, Gipsen WH, Bar PR, Joosten EA. Up-regulation of CD81(target of the antiproliferative antibody: TAPA) by reactive microglia and astrocytes after spinal cord injury in the rat. J Comp Neurol. 2000:428:266-77. https://doi.org/10.1002/1096-9861(20001211)428:2<266::AID-CNE6>3.0.CO;2-0
  25. Levy S, Todd SC, Maecker HT. CD 81(TAPA-1) : a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol. 1998:16:89-109. https://doi.org/10.1146/annurev.immunol.16.1.89
  26. Dijkstra S, Geisert EE Jr., Dijkstra CD, Bar PR, Joosten EA. CD81 and microglial activation in vitro proliferation, phagocytosis and nitric oxide production. J Neuroimmunol. 2001:114:151-9. https://doi.org/10.1016/S0165-5728(01)00240-5
  27. Koistinaho J, Shimohama S, Sato M, Nishikawa H, Madono K, Akaike A, Kimura J. Differntial expression of small heat shock proteins in reactive astorcytes after focal ischemia: possible role of beta-adrenergic receptor. J Neurosci. 1999:19(22):9768-79.
  28. Yamaguchi A, Hori O, Stern DM, Hartmann E, Ogawa S, Tohyama M. Stress-Associated endoplasmic retculum protein 1(SERP1) /ribosome-associated membrane protein4(RAMP4) stabilizes membrane proteins during stress and faciliates subsequent glycosylation. Journal of Cell Biology. 1999:147:1195-204. https://doi.org/10.1083/jcb.147.6.1195
  29. Onodera H, Kogure K, Ono Y, Igarishi K, Kiyota Y, Nagaoka A. Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci. L.eff. 1989:98(1):101-4. https://doi.org/10.1016/0304-3940(89)90381-9
  30. Herrera DG, Robertson HA. Activation of dos in the brain. Prog. Neurobiol. 1996;50(2-3):83-107. https://doi.org/10.1016/S0301-0082(96)00021-4
  31. Gubits RM, Burke RE. Casey-McIntosh G, Bandele A, Munell F. Immediate-early gene induction after neuronal hypoxiaischemia. Mol Brain Res. 1993;18:228-38. https://doi.org/10.1016/0169-328X(93)90194-T
  32. Hafezi F, Steinbach JP, Marti A, Munez K, Wang Z-Q, Wagner EF, Aguzzi A, Reme C. The absence of c-Fos prevents light induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat Med. 1997;3:346-9. https://doi.org/10.1038/nm0397-346
  33. Akins PT, Liu PK, Hsu CY. Immediate early gene expression in response to cerebral ischemia: friend or foe? Stroke. 1996;27:1682-7. https://doi.org/10.1161/01.STR.27.9.1682
  34. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9:726-35.
  35. Masuhara K, Ohmichi M, Kurachi H, Tasaka K, Kanzaki T, Kimura A, Hayakawa J, Hisamoto K, Koike K, Murata Y. Involvement of extracellular signal-regulated protein kinase in gliosis induced during recovery from metabolic inhibition. Biochem Biophys Res Commun. 2000;267(3):892-96. https://doi.org/10.1006/bbrc.1999.2053
  36. Bonni A, Brunet A, West AE et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999:286:1358-62. https://doi.org/10.1126/science.286.5443.1358
  37. Han B, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000;20:5775-81.
  38. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A. Intravenous administration of MEK inhibitor U0126 a Vords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA. 2001:98(20):11569-74. https://doi.org/10.1073/pnas.181213498
  39. 危亦林. 世醫得效方. 北京: 人民衛生出版社; 1990, p. 271.
  40. 許浚. 東醫寶鑑(雜病篇). 서울: 法印文化史; 2005, p. 828.
  41. 金定濟. 診療要覽(下). 서울: 東洋醫學硏究院; 1974, p. 438.
  42. 裵元植. 韓方臨床學. 서울: 南山堂; 1986, p. 820-1.
  43. 김창민, 신민교, 안덕균, 이경순. 完譯中藥大辭典. 서울: 도서출판정담; 1998, p. 1036-43, 1159-68, 2589-94, 2667-72.