
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 309
Copyright ⓒ 2009 KSII

The priminary work of this paper was presented in PRICAI 2006: Trends in Artificial Intelligence, 9th
Pacific Rim International Conference on Artificial Intelligence, Guilin, China, August 7-11, 2006. This
research was supported by the research fund of Wonkwang University in 2008.

DOI: 10.3837/tiis.2009.03.006

GA-based Feed-forward Self-organizing
Neural Network Architecture and Its

Applications for Multi-variable Nonlinear
Process Systems

Sung-Kwun Oh1, Ho-Sung Park1, Chang-Won Jeong2 and Su-Chong Joo2

1 Department of Electrical Engineering, University of Suwon,
San 2-2 Wau-ri, Bong-dam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea

[e-mail: {ohsk, parkhs}@suwon.ac.kr]
2 Department of Computer Engineering, Wonkwang University,
344-2, Shinyong-Dong, Iksan, Chon-Buk, 570-749, South Korea

[e-mail: {mediblue, scjoo}@wku.ac.k]
*Corresponding author: Su-Chong Joo

Received May 3, 2009; revised June 10, 2009; accepted June 14, 2009;

published June 22, 2009

Abstract

In this paper, we introduce the architecture of Genetic Algorithm (GA) based Feed-forward
Polynomial Neural Networks (PNNs) and discuss a comprehensive design methodology. A
conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through
a network growth process. In order to generate structurally optimized PNNs, a GA-based
design procedure for each layer of the PNN leads to the selection of preferred nodes (PNs)
with optimal parameters available within the PNN. To evaluate the performance of the
GA-based PNN, experiments are done on a model by applying Medical Imaging System
(MIS) data to a multi-variable software process. A comparative analysis shows that the
proposed GA-based PNN is modeled with higher accuracy and more superb predictive
capability than previously presented intelligent models.

Keywords: Feed-forward self-organizing neural networks (FSONN), genetic algorithms,
group method of data handling (GMDH), medical imaging system

310 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

1. Introduction

Recently, much attention has been directed towards the advanced techniques of system

modeling. The panoply of existing methodologies and ensuing detailed algorithms are
confronted with nonlinear systems and extreme problem dimensionality on a quest for high
accuracy and generalization capabilities of the ensuing models.

As the complexity of the system to be modeled increases, experimental data and some
degree of prior domain knowledge conveyed by the model developer are essential to the
completion of an efficient design procedure. It is also worth stressing that the nonlinear form
of the model acts as a two-edged sword: while we gain flexibility to cope with experimental
data, we are provided with an abundance of nonlinear dependencies that need to be exploited
in a systematic manner. In particular, when dealing with high-order nonlinear and
multivariable equations of the model, we require a vast amount of data to estimate its complete
range of parameters [1][2]. To help alleviate such problems, Feed-forward Self-organizing
Neural Networks (FSONN) were introduced by Oh et al. [3][4][5][6][18] as a new class of
networks. These networks come with a high level of flexibility as each processing element
forming a node can have a different number of input variables and exploit a different order of
polynomials. Although the FSONN contains flexible model architecture with higher accuracy
due to its systematic design procedure, it is difficult to obtain a structurally and parametrically
optimized network because of the limited design of neurons located in each layer of FSONN.
Accordingly, the FSONN algorithm tends to produce overly complex networks a repetitive
computational load by the trial and error method and/or a repetitive parameter adjustment by
the designer, as in the case of the original GMDH algorithm.

In this study, in solving the problems with the conventional FSONN as well as the GMDH
algorithm, we introduce a new design approach of GA-based FSONN. Optimal design
parameters available within the node lead to a structurally and parametrically optimized
network, which is more flexible and simpler in architecture than the conventional FSONN.
Furthermore, we introduce an aggregate objective function that deals with training data and
testing data and elaborate on its optimization to produce a meaningful balance between the
approximation and generalization abilities of the model. In a nutshell, the objective of this
study is to develop a general design methodology of GA-based FSONN modeling, come up
with a logic-based structure for such a model and propose a comprehensive evolutionary
development environment in which the optimization of the models can be efficiently carried
out both at the structural and at the parametric levels [7]. To evaluate the performance of the
proposed model, we exploit MIS data [8] and pH neutralization process data [9].

2. The FSONN algorithm and its generic architecture

2.1 Polynomial Neuron (PN) based FSONN and its architecture

2.1.1 Polynomial Neuron (PN)

The PN-based FSONN algorithm [3][4][5] is based on the GMDH [10] method and utilizes a
class of linear, quadratic, and modified quadraticpolynomals which can be seen in Table 1. By
choosing the most significant input variables and a certain order of the polynomials among the
available variety of structures at our disposal, we can construct the best partial description
(PD) of a polynomial neuron (PN). The individual PNs are expressed as a second-order

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 311

regression equation. In particular, when combining two inputs at each node as the generic
structure we arrive at the following relationship:

jijiji XFXEXDXCXBXAy +++++= 22

 (1)

In the above expression, A, B, C, D, E, and F are parameters of the model, while y is the
output of this model. Xi and Xj denote the two inputs.

The outputs obtained from each of these nodes are then combined to obtain a higher-degree
polynomial. In this case, a complex Ivakhnenko polynomial is formed. This function usually
takes on the form

Lkj

n

i

n

i

n

j

n

i

n

j

n

k

iijkjiijii XXXDXXCXBAy å åå ååå
= = = = = =

+++=
1 1 1 1 1 1

(2)

where Xi, Xj and Xk are nodal input variables and y is the output of an individual neuron, or
node. A, Bi, Cij, and Dijk are the coefficients of the Ivakhnenko polynomial.

The PN-based FSONN design activities have focused over the past years on the
development of self-organizing, minimal polynomial networks with good generation
capabilities. Searching for the optimal configuration in the space of all possible Feed-forward
Self-Organizing Neural Networks is intractable and requires the application of certain
heuristic rules. The PN-based FSONN leads to self-organizing heuristic hierarchical models of
high degree equipped with an automatic elimination of undesirable variable interactions.

2.1.2 Polynomial Neuron (PN) based FSONN architecture

The PN-based FSONN based on a perceptron learning principle with neural network-type
architecture is used to model the input-output relationship of a complex process system. The
design of the PN-based FSONN structure continues and involves the generation of some
additional layers. Each layer consists of nodes (PDs or PNs) for which the number of input
variables could be the same as in the previous layers or may differ across the network as shown
in Fig. 1.

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN

PN ŷ

x
1

x
2

x
3

x
4

1st layer 2nd layer or higher

C
0
+C

1
z

p
+C

2
z

q
+C

3
z2

p
+C

4
z2

q
+C

5
z

p
z

q

z
p

zq

z

PN

z
p

zq

2

Partial
Description

Polynomial
order

Input
variables

Fig. 1. A general architecture of PN-based FSONN

312 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

At each layer, new generations of complex equations are constructed from simple forms.
The model obtained at each subsequent layer is progressively more complex than the model at
the preceding layers. To avoid an overfit, the overall data set is divided into two segments. The
first training set, which is used for the generation of several computing alternative models. The
second is the testing set, which is used to test the accuracy of each model generated and for the
selection of the best models at each layer. The number of layers is increased until the newer
models begin to exhibit weaker predictability than their predecessors. This indicates the
overfitting of the model. The final model is defined as a function of two, three, or four
variables. The network result is a very sophisticated model obtained from a very limited data
set.

We introduce two types of generic PN-based FSONN structures, namely the basic and the
modified PN-based FSONN. Moreover, for each type of topology we identify two schemes
[3][4][5]. In what follows, the PN-based FSONN emerges as a versatile architecture whose
topology depends on the regression polynomial of a PN.

Table 1. Different forms of regression polynomials forming a PN

 Number of inputs

Order of the polynomial
1 2 3

1 (Type 1) Linear Bilinear Trilinear

2 (Type 2) Quadratic Biquadratic-1 Triquadratic-1

2 (Type 3) Quadratic Biquadratic-2 Triquadratic-2

1 : Basic type 2 : Modified type

2.2 Fuzzy Polynomial Neuron (FPN) based FSONN and its topology

2.2.1 Fuzzy polynomial neuron (FPN)

As visualized in Fig. 2, the FPN consists of two basic functional modules. The first labeled F,
is a collection of fuzzy sets ({Al} and {Bk}) that form an interface between the input and the
processing segment realized by the neuron. The second module denoted here by P ,refer to
function-based nonlinear (polynomial) processing. This nonlinear processing involves some
input variables xi and xj. Quite commonly, we will be using the polynomial form of the
nonlinearity, hence the name of the fuzzy polynomial processing unit. The use of polynomials
is motivated by their generality. In particular, the ones used include constant and linear
mappings. These are used quite often in rule-based systems.

P
1

P
2

P
K

x
p

x
q

x
i
,x

j

å

1m

2
m

K
m

P
33

m

1
m̂

2
m̂

3
m̂

K
m̂

z

FPN

{Bk}

{Al}

F

P

Fig. 2. The general architecture of the generic FPN module

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 313

In other words, FPN realizes a family of multiple-input single-output rules. Each rule has

the form
)(lkjilkkqlp a,x,xPiszTHENBisxandAisxIF (3)

where alk is a vector of the parameters of the conclusion part of the rule while Plk(xi, xj, alk)
denotes the regression polynomial forming the consequence part of the fuzzy rule which uses
several types of high-order polynomials in addition the constant function forming the simplest
version of the consequence. You can see this in Table 2.

Alluding to the input variables of the FPN, especially a way in which they interact with the
two functional blocks shown there, we use the notation FPN (xp, xq; xi, xj) to explicitly point at
the variables. The processing of the FPN is governed by the following expressions that are in
line with the rule-based computing existing in the literature [11][12].

2.2.2 Fuzzy Polynomial Neuron (FPN) based FSONN architecture
The topology of the FPN-based FSONN implies the ensuing learning mechanisms; in the
description below we indicate some of these learning issues that permeate the overall
architecture. First, the network is homogeneous in the sense that it is constructed with the use
of FPNs. It is also heterogeneous in the sense that FPNs can be very different and this
contributes to the generality of the architecture. The network may contain a number of hidden
layers each of them of a different size, which is to say having different of nodes. The nodes
may have a different number of inputs and this triggers a certain pattern of network
connectivity. FPN itself promotes a number of interesting design options, see Fig. 3.

FPN

x
1

x
2

x
n

y
k

Designer-based design alternatives

MF type

Triangular

Gaussian

Selected input

Entire system input

2

3

GA-based design alternatives

Fuzzy inference method

Simplified(Type 1)

Regeression polynomial(Type 2~4)

Parameters

No. of inputs and order of
the consequence

polynomial

No. of MFsConsequent structure of the fuzzy rules

Fig. 3. The design alternatives available within a single FPN

314 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

These alternatives distinguish between two categories, a design-based category and a
GA-based category. The design-based category concerns a choice of the membership function
(MF) type, the consequent input structure of the fuzzy rules, and the number of MFs for each
input variable. The latter is related to a choice of the number of inputs, the collection of a
specific subset of input variables, and its associated polynomial order. This is done after
realizing a consequence of the rules based on the fuzzy inference method.

Proceeding with the FPN-based FSONN architecture, essential design decisions have to be
made with regard to the number of input variables, the order of the polynomial forming the
conclusion of the rules, and a collection of the specific subset of input variables. The
consequence segment can be expressed by linear, quadratic, or modified quadratic polynomial
equations as mentioned previously. Especially for the consequence segment, we especially
consider two kinds of input vector formats in the conclusion segment of the fuzzy rules of the
1st layer, namely i) selected inputs and ii) entire system inputs, as seen in Table 3.

i) The input variables of the consequence segment of the fuzzy rules are same as the input
variables of premise segment.

ii) The input variables of the consequence segment of the fuzzy rules in a node of the 1st
layer are same as the entire system input variables and the input variables of the
consequence segment of the fuzzy rules in a node of the 2nd layer or higher are same as the
input variables of premise segment.

Table 3. Polynomial type according to the number of input variables in the fuzzy rules conclusion
segment

Input vector

Type of the

Consequence polynomial

Selected input
varialbes in the

premise part

Selected input
varialbes in the

consequence part

Entire system
input variables

Type T A A B

Type T* a b B

Where notation A: Vector of the selected input variables (x1, x2,…, xi), B: Vector of all system
input variables (x1, x2, …xi, xj …), Type T: f(A)=f(x1, x2,…, xi) - type of a polynomial function
standing in the consequence segment of the fuzzy rules, Type T*: f(B)=f(x1, x2, …xi, xj …) -
type of a polynomial function occurring in the consequence segment of the fuzzy rules

As shown in Table 3, A and B describe vectors of the selected input variables and the entire
collection of input variables respectively. Proceeding with each layer of the FPN-based
FSONN, the design alternatives available within a single FPN can be carried out with regard to
the entire collection of the input variables or its selected subset as they occur in the
consequence segment of fuzzy rules encountered at the 1st layer. Following these criteria, we
distinguish between two fundamental types (Type T, Type T*), namely Type T- the input
variables in the conditional part of fuzzy rules are kept as those in the conclusion segment of
the fuzzy rules (Zi of (A) FPN (xp, xq: xi, xj)). Type T*- the entire collection of the input
variables is kept as input variables in the conclusion segment of the fuzzy rules (Zi of (B) FPN
(xp, xq: x1, x2, x3, x4)).

3. Genetic optimization of FSONN

When we construct the PNs or FPNs of each layer in the conventional FSONN, such
parameters as the number of input variables, the order of polynomials, and input variables

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 315

available within a PN are selected in advance by the designer. That is, the designer must have
pre-determined information related to the networks such as the number of system input
variables and the polynomial order. Because the conventional FSONN is a heuristic method, it
does not guarantee that the constructed FSONN is optimal network architecture. Accordingly,
in order to generate a structurally and parametrically optimized FSONN network, such
parameters need to be optimal.

In order to solve this problem, we use genetic algorithms that are a stochastic global search
technique based on the principles of evolution, natural selection and genetic recombination by
simulating survival of the fittest in a population of potential solutions to the problem at hand
[13][14][15][16].

In this study, for the optimization of the FSONN model, GAs use the serial method of binary
type, a roulette wheel in the selection operator, a one-point crossover in the crossover operator,
and an invert in the mutation operator. As the roulette-wheel operator’s stochastic
characteristic, when creating a new generation by selection operators, we will choose the best
chromosome from the last generation. To reduce the stochastic errors of roulette wheel
selection, we use an elitist strategy [15]. The overall structural optimization process of
FSONN using GAs is shown in Fig. 4-5.

As mentioned, when we construct PNs or FPNs of each layer in the conventional FSONN,
such parameters as the number of input variables, the order of the polynomial and input
variables available within a PN or a FPN are fixed in advance by the designer. This could have
frequently contributed to the difficulties in the design of an optimal network. To overcome this
apparent drawback, we resort to genetic optimization.

4. GA-based FSONN algorithm

The framework of the design procedure of Feed-forward PNNs (Editor’s note: Already
defined earlier, no need to do it again) consists of the following steps:
[Step 1] Determine system’s input variables
Define the system’s input variables as xi(i=1, 2, …, n) related to output variable y. If required,
the data can be normalized as well.
[Step 2] Form training and testing data

E

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Genetic
design

Genetic
design

Layer
Generation

1st
layer

1st
layer

S

E : Entire inputs, S : Selected PNs, z
i
: Preferred outputs in the ith stage(z

i
=z

1i
, z

2i
, ..., z

Wi
)

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Layer
Generation

S

2nd stage

z
1

z
2

Genetic
design

Genetic
design

2nd
layer

2nd
layer

1st stage

Fig. 4. Overall structural optimization process of PN-based FSONN using Gas

316 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

E

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

FPNs Selection

Genetic
design

Genetic
design

Layer
Generation

1st
layer

1st
layer

S

E : Entire inputs, S : Selected FPNs, zi : Preferred outputs in the ith stage(zi=z1i, z2i, ..., zWi)

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

FPNs Selection

Layer
Generation

S

2nd stage

z
1

z
2

Genetic
design

Genetic
design

2nd
layer

2nd
layer

1st stage

Fuzzy inference &
fuzzy identification

Initial information for
fuzzy inference method
& fuzzy identification

Initial information for
fuzzy inference method
& fuzzy identification

Fuzzy inference &
fuzzy identification

Fuzzy inference
method

MF Type

Structure of the
consequent part of fuzzy

rules

Simplified or regression
polynomial fuzzy inference

Triangular or Gaussian

Selected input variables
or entire system input

variables

Fig. 5. Overview genetically-driven structural optimization process of FPN-based FSONN

The input-output data set (xi, yi)=(x1i, x2i, …, xni, yi), i=1, 2, …, N where N is the total amount
of data is divided into two parts, that is, training and testing datasets. Denote their sizes by Nt
and Nc respectively. Obviously we have N=Nt+Nc. The training data set is used to construct the
FSONN model. Next, the testing data set is used to evaluate the quality of the model.
[Step 3] Determine the initial information for constructing the FSONN structure

We determine the initial information for the FSONN structure in the following manner:
a) According to the stopping criterion, two termination methods are exploited here:

 - Comparison of a minimal identification error of the current layer with that of the
previous layer of the network

 - The maximum number of generations predetermined by the designer to achieve a
balance between model accuracy and its complexity

b) The maximum number of input variables arriving at each node in the corresponding
layer
c) The total number W of nodes to be retained (selected) at the next generation of the
FSONN algorithm
d) The value of the weighting factor of the aggregate objective function

[Step 4] Decide a structure of the PN or FPN-based FSONN using genetic design
The concerns are with the selection of the number of input variables, the polynomial order,

and the input variables to be assigned in each node of the corresponding layer. We determine
the structure of the PN or FPN-based FSONN using genetic design.

When it comes to the organization of the chromosome representing the structure of the
FSONN, we divide the chromosome to be used for genetic optimization into three
sub-chromosomes as shown in Fig. 6-7. The 1st sub-chromosome contains the number of input
variables, the 2nd sub-chromosome involves the order of the polynomial of the node, and the
3rd sub-chromosome contains input variables for the corresponding node. All these elements
are optimized when running the GA.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 317

Selection of node(PN) structrue by chromosome

i) Bits for the selection of
the no. of input variables

Decoding
(Decimal)

Normalization
(less than

Max)

iii) Bits for the selection
of input variables

ii) Bits for the selection
of the polynomial order

PN

1 0 1 1 1 1 10 10 1 1

1 1 0 1 1 1

1 r

Decoding
(Decimal)

Decoding
(Decimal)

Normalization
(1 ~ n(or W))

Decision of
input variables

Selection of
the order of
polynomial

(Type 1~Type 3)

Selection of
no. of input
variables(r) Selection of input variables

Related bit items

Genetic
Design

Selected PN

Decoding
(Decimal)

Normalization
(1 ~ 3)

Normalization
(1 ~ n(or W))

Decision of
input variables

Bit structure of sub-
chromosome divided

for each item

Fig. 6. The PN design available in FSONN architecture by using a GA chromosome

Each sub-step of the genetic design procedure of three kinds of parameters available within

the PN or the FPN is structured as follows:
[Step 4-1] Selection of the number of input variables (1st sub-chromosome)
[Step 4-2] Selection of the order of polynomials (2nd sub-chromosome)
[Step 4-3] Selection of input variables (3rd sub-chromosome)
[Step 5] Estimate the coefficients of the polynomial corresponding to the selected node (PN or
FPN)
[Step 5-1] In case of a PN
The vector of coefficients Ci is derived by minimizing the mean squared error between yi and
zmi.
The vector of coefficients Ci is derived by minimizing the mean squared error between yi and
zmi.

()å
=

-=
trN

i

mii
tr

zy
N

E
0

21

(4)

Using the training data subset, this gives rise to the set of linear equations

iiCXY = (5)

Evidently, the coefficients of the PN of nodes in each layer are determined by the standard
least square method.
[Step 5-2] In case of a FPN
At this step, the regression polynomial inference is considered. The inference method deals
with regression polynomial functions viewed as the consequents of the rules. Regression
polynomials standing in the conclusion segment of fuzzy rules are given as different types of
Type 1, 2, 3, or 4, see Table 2. In the fuzzy inference, we consider two types of membership
functions, namely triangular and Gaussian-like membership functions.

318 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

S elec tion o f n od e(FP N) s tr u ctru e b y ch r om osom e

i) B it s for th e se lec tion o f
t he no . o f inp ut var iable s

iii) B its for the s e lec tion
of in put variab le s

ii) B its for the s elec tion
of the p o lynom ia l order

F P N

1 0 1 1 1 1 10 10 1 1

1 1 0 1 1 1

1 r

D e co d in g
(D e cim a l)

D e co d in g
(D ec im a l)

N o rm a liz a ti o n
(1 ~ n (o r W))

N o r m a liz a tio n
(1 ~ n (o r W))

D e c isio n o f
in p u t v a r ia b le s

D e c isio n o f
in p u t v a ri a b le s

S elec tion o f in put var iab les

G en etic
D esig n

S ele cte d F P N

T r ia n g u l a r o r
G a u ss ia n

S im p lifi ed o r
re g r e ss io n

p o ly n o m ia l fu z z y
in fe r e n ce

2 o r 3
S e le c ted in p u t v a r ia b le s o r

e n tir e s y st em in p u t va r ia b l es

R e lated b it item s

B it s tru c tu re o f su b -
c h rom osom e d iv id ed

fo r ea ch i te m

Fu zzy in fer en c e &
fu zzy id en ti fica tion

D eco ding
(D ec im al)

N orm alization
(le ss than

M ax)

Se lection o f
no . o f inp ut
variab les (r)

D ecoding
(D ec im al)

N orm alization
(1 ~ 4)

Se lect ion o f
th e o rd er o f
po lyn om ia l

(T y pe 1~ T y pe 4)

F u z zy in f e re n e
m et h o d

M F T y p e
N o . o f M F s p er

ea c h in p u t
T h e s tr u c tu r e o f c o n se q u e n t

p a r t o f f u z zy r u le s

Fig. 7. The genetic FPN design used in FSONN architecture

xmin xmax
0

1

minmax

max

xx

xx

-

-

)(xm

x

maxxxif ³

minxxif £

maxmin xxxif <<)(xSm0.5

1

0

Small() Big())(xSm)(1)(xx SB mm -=

(a) Triangular MF

xmin xmax
0

1

)(xm

x

0.5

maxxcif ³

minxcif £

maxmin xcxif <<)(xSm

1

0
2

)(
6931.0

)(
÷
ø

ö
ç
è

æ -
-

= sm

cx

ex

Small() Big())(xSm)(1)(xx SB mm -=

(b) Gaussian-like MF

Fig. 8. Triangular and Gaussian-like membership function and their parameters

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 319

The regression fuzzy inference reasoning scheme is envisioned: The consequence segment
can be expressed by constant, linear, quadratic, or modified quadratic polynomial equations as
shown in Table 2. The use of the regression polynomial inference method gives rise to the
expression

),,,(,,: 2111 kiiikki
i xxxfyTHENAisxandAisxIFR LL = (6)

where Ri is the i-th fuzzy rule, xl(l=1, 2, ¼, k) is an input variable, Aik is a membership function
of fuzzy sets, k denotes the number of the input variables, fi(·) is a regression polynomial
function of the input variables.
The calculation of the numeric output of the model is carried out in the well-known form

),,,(ˆ

),,,(

ˆ 21

1

1

1

21

k

n

i

iin

i

i

n

i

kii

xxxf

xxxf

y L

L

å
å

å

=

=

= == m

m

m

 (7)

where, n is the number of fuzzy rules, ŷ is the inferred value, im is the premise fitness of Ri

and im̂ is the normalized premise fitness of im .
Here we consider the regression polynomial function of the input variables. The consequence
parameters are produced by the standard least squares method.
This procedure is implemented repeatedly for all nodes of the layer and also for all FSONN
layers, starting from the input layer and moving to the output layer.
[Step 6] Select nodes with the best predictive capability, and construct their corresponding
layer

As shown in Fig. 6-7, all nodes of the corresponding layer of FSONN architecture are
constructed by genetic optimization. The generation process of PNs or FPNs in the
corresponding layer is described in detail as a design procedure of 9 sub-steps. The sequence
of sub-steps is as follows:
Sub-step 1) We determine the initial genetic information for the generation of the FSONN
architecture. That is, the number of generations and individuals, mutation rate, crossover rate,
and the length of a chromosome.
Sub-step 2) The nodes are generated by genetic design. There are as many variations as the
number of individuals in the 1st generation. One individual takes the same role as one node in
the FSONN architecture and each individual is operated by GAs as shown in Fig. 6-7. That is,
the number of input variables, the order of the polynomials, and the input variables as one
individual are selected by GAs. The polynomial parameters are produced by the standard least
squares method.
Sub-step 3) To evaluate the performance of PNs in each population, we use an aggregate
objective function that takes into account a sound balance between approximation and
prediction capabilities of the one as shown in Eq. (5). Then from the performance index
obtained in Eq. (5), we calculate the fitness function of Eq. (6). The objective function, or cost
function, is employed to decrease the error rate and to increase the predictability of the model
- that is, the objective function includes the performance index for training (PI) and the
performance index for evaluation (EPI), that are combined by means of a weighting factor q.
The objective function is a basic instrument guiding the evolutionary search in a solution space
[12]. The objective function includes both the training data and the testing data and comes as a
convex sum of two components.

320 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

EPIPIEPIPIf ´-+´=)1(),(qq (8)

We define the fitness function of the genetic algorithm as follows:

),(1

1
)(

EPIPIf
functionfitnessF

+
=

.
(9)

PI and EPI denote the performance index for the training data and testing data respectively.
Moreover, q is a weighting factor that allows us to strike a balance between the performances
of the models for training and testing data. The aggregate object function depends upon the
values of a weighting factor. Both PI and EPI are considered and the proper selection of q
establishes the direction of optimization to maintain a balance between approximation and
generalization. Model selection is performed from the minimization of this aggregate
objective function.
Sub-step 4) To produce the next generation, we carry out selection, crossover, and mutation
operations using initial genetic information and the fitness values obtained from sub-step 3.
Sub-step 5) The nodes are rearranged in descending order on the basis of the calculated fitness
values (F1, F2, …, Fz). We unify the nodes with duplicated fitness values. In the case that more
than one node has the same fitness value, among the rearranged nodes on the basis of the
fitness values. We choose several nodes characterized by the best fitness values. Here, we use
the pre-defined number W of nodes with better predictive capability that must be preserved for
optimal operation of the next iteration in the PNN algorithm. The outputs of the retained nodes
serve as inputs in the subsequent layer of the network. There are two cases as to the number of
the retained nodes, that is,

(i) If z<W, then the number of the nodes retained for the next layer is equal to z.
(ii) If z³W, then for the next layer, the number of the retained nodes is equal to W.

Sub-step 6) For the elitist strategy, we select the node that has the highest fitness value among
the selected nodes (W).
Sub-step 7) We generate new individuals of the next generation using operators of GAs
obtained from sub-step 4. Then we use the elitist strategy. This sub-step carries out by
repeating sub-steps 2-6. Especially in sub-step 5, we replace the node that has the lowest
fitness value in the current generation with the node that has the highest fitness value in the
previous generation obtained from sub-step 6.
Sub-step 8) We combine the nodes (W individuals) obtained in the previous generation with
the nodes (W individuals) obtained in the current generation. In the sequel, W nodes that have
higher fitness values among them (2W) are selected. That is, this sub-step carries out by
repeating sub-step 5.
Sub-step 9) Until the last generation, this sub-step carries out by repeating sub-steps 7-8. The
iterative process generates the optimal nodes of a layer in the FSONN model.
[Step 7] Check the termination criterion
The termination condition that controls the growth of the model consists of two components,
the performance index and the size of the network, expressed in terms of the maximal number
of layers. As far as the performance index is concerned that reflects a numeric accuracy of the
layers, termination is straightforward and comes in the form:

*1 FF £ (10)

Where, F1 denotes a maximal fitness value occurring at the current layer whereas F* stands
for a maximal fitness value that occurred at the previous layer. As far as the depth of the
network is concerned, the generation process is stopped at a depth of less than five layers. This

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 321

size of the network has been experimentally found to form a sound compromise between the
high accuracy of the resulting model and its complexity and generalization abilities.
In this study, we use the Mean Squared Error (MSE) for measure of performance index.

å
=

-=
N

p

ppss yy
N

EPIorPIE
1

2)ˆ(
1

)(

(11)

where yp is the p-th target output data and pŷ
 stands for the p-th actual output of the model for

this specific data point. N is training (PIs) or testing (EPIs) input-output data pairs and E is an
overall performance index defined as a sum of the errors for the N.
[Step 8] Determine new input variables for the next layer
If Eq. (10) has not been satisfied, the model has to be expanded. The outputs of the preserved
nodes (z1i, z2i, …, zWi) serves as new inputs to the next layer (x1j, x2j, …, xWj) (j=i+1). This is
captured by the expression.

wiwjijij zxzxzx === ,,, 2211 K
 (12)

The GA-based FSONN algorithm is carried out by repeating steps 4-8 consecutively.

5. Experimental Studies

In this section, we illustrate the development of the GA-based FSONN and show its
performance for a number of well-known and widely used datasets. The first one is a Medical
Imaging System data which was studied previously in software process modeling [8]. The
other one deals with pH neutralization process data [9].

5.1 Medical Imaging System Data

This section includes comprehensive numeric studies illustrating the design of the GA-based
PNN model. We use a well-known MIS [8] data.
This data set concerns a MIS data set which involves 390 software modules written in Pascal
and FORTRAN. These modules consist of approximately 40,000 lines of code. To design an
optimal model from the MIS, we study 11 system input variables such as, Total lines of code
including comments (LOC), Total code lines (CL), Total character count (TChar), Total
comments (TComm), Number of comment characters (MChar), Number of code characters

(DChar), Halstead’s program length (N), Halstead’s estimated program length (N̂), Jensen’s
estimator of program length (NF), McCabe’s cyclomatic complexity (V(G)), and Belady’s
bandwidth metric (BW). The output variable of the model is the number of reported changes -
Change Reports (CRs). In case of the MIS data, the performance index is defined as the mean
squared error (MSE) as Eq. (11).

Table 4 summarizes the list of parameters used in the genetic optimization of the PN-based
and the FPN-based FSONN.

Table 4. Computational aspects of the genetic optimization of PN-based and FPN-based FSONN

 Parameters 1st layer 2nd layer 3rd layer 4th layer 5th layer
PN 300

Maximum generation
FPN 100
PN 150

Total population size
FPN 60
PN 30(l=2~5), 60(l=9)

GA

Selected population
size (W) FPN 30(l=4)

322 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

PN 3+3+30(l=2~5), 5+3+60 (l=9)
String length

FPN 3+3+30(l=4)
Crossover rate 0.65
Mutation rate 0.1

Maximal no. (Max) of inputs to
be selected

1≤l≤Max (2~5, 9) PN
based

FSONN Polynomial type (Type T) (#) 1≤T≤3
Maximal no. (Max) of inputs to

be selected
1≤l≤Max (2~4)

Polynomial type (Type T) of the
consequent part of fuzzy rules (##)

1≤T≤4

Type T Consequent input type to be used
for Type T (###) Type T* Type T

Membership Function (MF) type Triangular, Gaussian

FPN
based

FSONN

No. of MFs per input 2

 l, T, Max: integers, #, ##and ###: refer to Tables 1-3 respectively.
5.1.1 Polynomial Neuron (PN) based FSONN
Fig. 9 depicts the performance index of a PN-based FSONN according to the maximal number
of inputs to be selected when using q=0.5 and Max=5, 9.

1 2 3 4 5
10

15

20

25

30

35

40
A : (7,4,6,11,3 ; 2)

B : (11,4,6,7,3,0,0,0,0 ; 2)

A : (4,8,18,27,0 ; 3)

B : (12,44,52,16,34,0,0,0,0 ; 2)

A : (19,9,24,4,13 ; 3)

B : (36,16,37,44,0,0,0,0,0 ; 2)

A : (20,13,14,5,0 ; 3)

B : (41,54,56,48,0,0,0,0,0 ; 2)

A : (15,21,6,13,4 ; 1)

B : (48,55,42,57,30,49,10,37,0 ; 1)

1 2 3 4 5
10

15

20

25

30

35

40

Maximal number of inputs to be selected

5 (A) 9 (B)

(Max)

T
ra

in
in

g
 e

rr
o

rs

Layer

Maximal number of inputs to be selected

5 (A) 9 (B)

(Max)

T
es

ti
n

g
 e

rr
o

rs

Layer

(a) Training data (b) Testing data
Fig. 9. Performance index of a PN-based FSONN according to the maximal number of inputs to be
selected (q=0.5 and Max=5, 9)

Fig. 10 illustrates the detailed optimal topologies of the PN-based FSONN for 3 layers. As
shown in Fig. 10, the GA-based design procedure at each stage (layer) of PN-based FSONN
leads to the selection of preferred nodes (or PNs) with local characteristics (such as the number
of input variables, the order of the polynomial, and input variables) available within the
PN-based FSONN. In the sequel, the proposed network enables the architecture to be a
structurally more optimized and flexible network than the conventional PN-based FSONN.

Referring to Fig. 10, we adhere to the following notation N T

PNn

: ‘PNn’ denotes the nth node
(PN) of the corresponding layer, ‘N’ denotes the number of nodes (inputs or PNs) coming to
the corresponding node, and ‘T’ denotes the polynomial order used in the corresponding node.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 323

PN16

5 2

PN36

5 3

PN37

4 2

PN44

3 2

LOC

CL

TChar

TComm

MChar

DChar

N

N̂

NF

V(G)

BW

ŷ
PN15

4 2PN 34

5 3

PN 38

6 2

PN 33

7 3

PN 31

6 2

PN 28

6 3

PN 25

8 3

PN 19

8 3

PN 16

9 3

PN 12

6 3

PN7

6 3

PN 56

6 3

PN 60

7 3

PN 54

5 3

PN 52

7 3

PN 47

5 3

PN 44

5 3

Fig. 10. Optimal networks structure of PN-based FSONN with 3 layers (q=0.5 and Max=9)

Figs. 11-12 show output comparison and identification errors for the optimal network
architecture visualized when using 5th layer, q=0.5 and Max=9.

5.1.2 Fuzzy Polynomial Neuron (FPN) based FSONN
Table 5 summarizes the results when using Types T and T*: According to the maximal
number of inputs to be selected (Max=2 to 5), the selected polynomial type (T), and its
corresponding performance index (PI and EPI) were shown when the genetic optimization for
each layer was carried out.

Data no.

T
es

ti
n

g
 O

u
tp

u
t

0 50 100 150 200 234
-10

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 156
-10

0

10

20

30

40

50

60

70

80

90

100

Data no.

T
ra

in
in

g
 O

u
tp

u
t

: Original output

: Model output

: Original output

: Model output

(a) Training data (b) Testing data
Fig. 11. Original output and model output of MIS data

324 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

T
es

ti
n

g
 e

rr
o

rs

T
ra

in
in

g
 e

rr
o

rs

Data no.Data no.
0 50 100 150 200 234

-30

-20

-10

0

10

20

30

0 20 40 60 80 100 120 140 156
-30

-20

-10

0

10

20

30

(a) Training data (b) Testing data
Fig. 12. Errors curve of genetically designed PN-based FSONN

Table 5. Performance index of the network of each layer versus the increase of maximal number of
inputs to be selected

(a) In case of Type T

(a-1) Triangular
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI
2 1 53.125 29.660 1 45.199 20.724 2 39.693 16.286 1 32.401 14.673 4 30.371 13.887
3 1 45.305 23.002 1 39.312 16.852 4 35.816 13.699 1 33.750 11.630 3 28.095 9.841
4 1 39.894 17.070 3 36.852 14.636 3 29.962 12.900 4 33.824 11.262 3 28.691 10.071
5 1 39.894 17.070 3 36.852 14.636 3 34.848 12.389 1 24.545 9.264 1 23.739 9.080

(a-2) Gaussian-like
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI
2 1 50.656 31.288 1 50.252 19.672 2 39.890 17.843 4 32.627 12.554 2 31.645 11.217
3 1 49.254 24.982 1 41.005 17.618 1 37.149 12.840 1 32.091 11.761 4 26.328 11.342
4 1 49.254 24.982 1 39.886 15.982 1 32.550 13.956 1 32.512 12.565 1 24.017 10.738
5 1 49.254 24.982 1 41.034 16.762 1 35.719 12.865 1 37.268 11.765 1 36.571 10.289

(b) In case of Type T*
(b-1) Triangular

1st layer 2nd layer 3rd layer 4th layer 5th layer Max
T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI

2 2 39.499 20.481 1 36.989 13.236 1 36.877 12.800 3 31.181 11.624 1 29.812 10.926
3 2 39.499 20.481 1 24.322 12.916 1 24.303 12.175 1 24.229 11.063 1 24.086 10.979
4 1 39.894 17.070 1 36.989 13.236 1 26.614 10.601 1 26.583 10.418 4 26.521 10.164
5 1 39.894 17.070 1 36.989 13.236 1 36.756 12.683 3 24.888 10.828 1 25.187 10.392

(b-2) Gaussian-like
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI
2 2 38.972 21.461 1 35.195 17.341 1 37.376 14.861 2 25.864 13.752 2 24.346 12.549
3 2 38.972 21.461 1 37.107 13.698 1 28.137 12.391 2 26.864 12.102 1 25.237 10.906
4 2 38.972 21.461 1 37.100 16.599 1 29.876 13.357 1 32.217 11.654 1 26.921 11.497
5 2 38.972 21.461 1 37.107 13.698 1 33.259 11.900 1 32.638 9.738 1 35.058 9.150

Fig. 13 shows the values of performance index vis-à-vis number of layers of the GA-based

FSONN with respect to the maximal number of inputs to be selected as optimal architectures
of each layer of the network included in Table 5(a)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 325

1 2 3 4 5
20

25

30

35

40

45

50

55

Layer

T
ra

in
in

g
 d

at
a

er
ro

r

Max - 2 :

Max - 3 :

Max - 4 :

Max - 5 :

1 2 3 4 5
5

10

15

20

25

30

Layer

T
es

ti
ng

 d
at

a
er

ro
r

(a) Triangular

1 2 3 4 5
20

25

30

35

40

45

50

55

Layer

T
ra

in
in

g
d

at
a

er
ro

r

Max - 2 :

Max - 3 :

Max - 4 :

Max - 5 :

1 2 3 4 5
10

15

20

25

30

35

Layer

T
es

ti
ng

 d
at

a
er

ro
r

(b) Gaussian-like

Fig. 13. Performance index of GA-based FSONN

Table 6 summarizes the results of comparative analysis of the proposed model with respect
to other constructs.

5.2 pH Neutralization Process Data

To demonstrate the high modeling accuracy of the proposed model, we apply it to a highly
nonlinear of pH neutralization of a weak acid and a strong base. This model can be found in a
variety of practical areas including wastewater treatment, biotechnology processing, and
chemical processing [9]. pH is the measurement of the acidity or alkalinity of a solution
containing a proportion of water.
The system inputs of the proposed model structure consist of the delayed terms of Fb(t) and
ypH(t) which are input and output of the process, i. e.

1))(ty2),(ty3),(ty1),(tF2),(tF3),(t(F(t)y pHpHpHbbbpH ------=jˆ (13)

where (t)ŷpH and ypH(t) denote the proposed model output and the actual process output,

respectively. Table 7 summarizes the list of parameters used in the genetic optimization of the
PN-based and the FPN-based FSONN.

326 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

Table 6. Comparison of identification error with previous models

Model PI PIs EPIs
Regression model 36.13
PNN 8.456

Simplified 40.753 17.898
SONFN[17]

Linear
Generic
Type

Basic
Architecture 35.745 17.807

Triangular Type : 2 32.195 18.462
No. of inputs: 2

Gaussian Type : 1 49.716 31.423
Triangular Type : 1 32.251 19.622

FPNN[18]
No. of inputs: 3

Gaussian Type : 1 39.093 19.983
max-inputs: 5 22.238 12.566 PN-based FSONN

(θ=0.5) max-inputs: 9
Type : 1≤T≤3

7.161 18.043 11.898
Triangular 23.739 9.080

Type T
Gaussian-like 24.017 10.738
Triangular 24.086 10.979

Our model
FPN-based FSONN
(θ=0.0)

Type T*
Gaussian-like 25.237 10.906

Table 7. Computational aspects of the genetic optimization of PN-based and FPN-based FSONN

 Parameters 1st layer 2nd layer 3rd layer 4th layer 5th layer
Maximum generation 100
Total population size 60

Selected population size (W) 30(l=2~5)
String length 3+3+30(l=2~5)

Crossover rate 0.65

GA

Mutation rate 0.1
Maximal no. (Max) of inputs to

be selected
1≤l≤Max (2~5) PN

based
FSONN Polynomial type (Type T) (#) 1≤T≤3

Maximal no. (Max) of inputs to
be selected

1≤l≤Max (2~4)

Polynomial type (Type T) of the
consequent part of fuzzy rules (##)

1≤T≤4

Type T Consequent input type to be used
for Type T (###) Type T* Type T

Membership Function (MF) type Triangular, Gaussian

FPN
based

FSONN

No. of MFs per input 2

 l, T, Max: integers, #, ##and ###: refer to Tables 1-3 respectively.

5.2.1 Polynomial Neuron (PN) based FSONN
Table 8 summarizes the results about PN-based FSONN: According to the maximal number
of inputs to be selected (Max=2 to 5), the selected polynomial type (Type T), and its
corresponding performance index (PI) were shown when the genetic optimization for each
layer was carried out.

Fig. 14 illustrates the optimization process by visualizing the performance index in
successive generations of the genetic optimization with Max=5.

Table 8. Performance index of the PN-based FSONN viewed with regard to the increasing number of

the layers

1st layer 2nd layer 3rd layer 4th layer 5th layer
Max

T PI T PI T PI T PI T PI
2 2 1.0878 2 0.6401 2 0.5190 2 0.4080 2 0.2582
3 2 0.9811 2 0.3587 2 0.2472 2 0.1608 2 0.0949

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 327

4 2 0.8402 2 0.2927 2 0.1990 2 0.1051 2 0.0597
5 2 0.7553 2 0.3035 2 0.1449 2 0.0637 2 0.0325

6th layer 7th layer 8th layer 9th layer 10th layer
Max

T PI T PI T PI T PI T PI
2 2 0.2170 2 0.1674 2 0.1402 2 0.1262 2 0.1144
3 2 0.0613 2 0.0365 2 0.0260 2 0.0199 2 0.0167
4 2 0.0289 2 0.0142 2 0.0088 2 0.0059 2 0.0040
5 2 0.0131 2 0.0063 2 0.0033 2 0.0020 2 0.0014

0 100 200 300 400 500 600 700 800 900 1000
1.40

1.45

1.50

1.55

1.60

1.65

1.70
x 10-3

1st
layer

2nd
layer

3rd
layer

4th
layer

5th
layer

6th
layer

7th
layer

8th
layer

9th
layer

10th
layer

Generation

P
er

fo
rm

an
ce

 i
n

d
ex

Fig. 14. The optimization process reported in term of performance index

5.2.2 Fuzzy Polynomial Neuron (FPN) based FSONN
Table 9 summarizes the performance of the 1st to 5th layer of the network when changing the
maximal number of inputs to be selected; here Max was set up to 2 through 5.

Table 9. Performance index of the network of each layer versus the increase of maximal number of
input to be selected

(a) In case of Type T

(a-1) Triangular
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI T PI T PI T PI T PI
2 3 0.5897 3 0.2445 3 0.0524 3 0.231 3 0.0142
3 3 0.2445 3 0.0111 3 0.0020 3 5.10e-4 3 2.40e-4
4 3 1.32e-4 3 1.25e-4 2 1.25e-4 3 1.25e-4 4 1.25e-4
5 3 1.30e-4 3 1.25e-4 2 1.25e-4 3 1.25e-4 2 1.25e-4

(a-2) Gaussian-like
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI T PI T PI T PI T PI
2 3 0.4972 3 0.0659 3 0.0088 4 0.0036 3 0.0015
3 3 0.0045 3 1.90e-4 3 1.40e-4 3 1.20e-4 4 1.20e-4
4 3 1.30e-4 3 1.25e-4 2 1.25e-4 4 1.25e-4 4 1.25e-4
5 3 1.30e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4 2 1.25e-4

(b) In case of Type T*
(b-1) Triangular

Max 1st layer 2nd layer 3rd layer 4th layer 5th layer

328 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

T PI T PI T PI T PI T PI
2 3 1.47e-4 4 1.36e-4 4 1.31e-4 3 1.30e-4 3 1.30e-4
3 3 1.30e-4 3 1.29e-4 4 1.25e-4 4 1.25e-4 3 1.25e-4
4 4 1.30e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4
5 4 1.29e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4 2 1.25e-4

(b-2) Gaussian-like
1st layer 2nd layer 3rd layer 4th layer 5th layer Max

T PI T PI T PI T PI T PI
2 3 1.36e-4 3 1.31e-4 4 1.30e-4 3 1.30e-4 3 1.30e-4
3 3 1.30e-4 4 1.25e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4
4 4 1.30e-4 3 1.25e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4
5 3 1.30e-4 2 1.25e-4 3 1.25e-4 2 1.25e-4 2 1.25e-4

Fig. 15 (a) illustrate the detailed optimal topologies of FPN-based FSONN for 1 layer when

using triangular MF: the results of the network have been reported as PI=1.29e-4 for Max=5
(see Table 9(b-1)). And also Fig. 15 (b) illustrates the detailed optimal topologies of
FPN-based FSONN for 1 layer in case of Gaussian-like MF: those are quantified as
PI=1.30e-4 for Max=3 (see Table 9(b-2)).

ŷ

F
b
(t-3)

F
b
(t-2)

F
b
(t-1)

FPN
1

5 4
T

pH
(t-3)

TpH(t-2)

TpH(t-1)

ŷ

F
b
(t-3)

F
b
(t-2)

F
b
(t-1)

FPN
29

3 3
T

pH
(t-3)

T
pH

(t-2)

TpH(t-1)
(a) Triangular MF (1 layer and Max=5) (b) Gaussian-like MF (1 layer and Max=3)

Fig. 15. FPN-based FSONN architecture

Table 10 gives a comparative summary of the network with other models. The experimental
results clearly reveal that it outperforms the existing models in terms of better approximation
capabilities.

Table 10. Comparative analysis of the performance of the network; considered are models reported in
the literature

Model PI
Case 1 0.0015 Basic type

(Layer : 15) Case 2 0.0052
Case 1 0.0039

PNN[3]
Modified type
(Layer : 10) Case 2 0.0124

1≤l≤2 0.1144

1≤l≤3 0.0167

1≤l≤4 0.0040
PN-based FSONN
(Layer : 10)

1≤l≤5

Type : 1≤T≤3

0.0014

Triangular 1.25e-4
Type T

Gaussian-like 1.25e-4
Triangular 1.25e-4

Our model

FPN-based FSONN
(Layer : 5)

Type T*
Gaussian-like 1.25e-4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009 329

6. Conclusions

In this study, the GA-based design procedure of Feed-forward Self-Organizing Neural
Networks (FSONN) and its design methodology were proposed to construct optimal model
architecture for nonlinear and complex system modeling. The design methodology comes with
hybrid structural optimization and parametric learning viewed as two phases of modeling
building. That is, the one phase (hybrid structural optimization) is realized via both GAs and a
structural phase of an evolutionary algorithm as the main characteristics of the GMDH method
while the other phase (parametric optimization) is carried out by a standard least square
estimation (LSE)-based learning. The comprehensive experimental studies involving
well-known datasets, MIS data and pH neutralization process data, quantify a superb
performance of the network in comparison to the existing models. First of all, we could
efficiently search for the optimal network architecture (structurally and parametrically
optimized network) by the design methodology of GA-based FSONN in comparison to that of
the conventional FSONN.

References

[1] V. Cherkassky, D. Gehring, F. Mulier, “Comparison of Adaptive Methods for Function Estimation
from Samples,” IEEE Trans. Neural Networks, Vol. 7, pp. 969-984, 1996.

[2] J.A. Dicherson, B. Kosko, “Fuzzy Function Approximation with Ellipsoidal Rules,” IEEE Trans.
on Systems, Man and Cybernetics, Part B. Vol. 26, pp. 542-560, 1996.

[3] S.K. Oh, W. Pedrycz, “The Design of Self-Organizing Polynomial Neural Networks,” Information
Science, Vol. 141, pp. 237-258, 2002.

[4] S.K. Oh, W. Pedrycz, B. J. Park, “Polynomial Neural Networks Architecture: Analysis and
Design,” Computers and Electrical Engineering, Vol. 29, No. 6, pp. 703-725, 2003.

[5] H.S. Park, B.J. Park, S.K. Oh, “Optimal Design of Self-Organizing Polynomial Neural Networks
By Means of Genetic Algorithms,” Journal of the Research Institute of Engineering Technology
Development, Vol. 22, pp. 111-121, 2002.

[6] H.S. Park, K.J. Park, D.Y. Lee, S.K. Oh, “Advanced Self-Organizing Neural Networks Based on
Competitive Fuzzy Polynomial Neurons,” The Transaction on KIEE, Vol. 53, No. 3, pp. 135-144,
2004.

[7] W. Pedrycz, M. Reformat, “Evolutionary Optimization of Fuzzy Models in Fuzzy Logic: A
framework for the New Millennium,” Studies in Fuzziness and Soft Computing, Vol. 8, pp. 51-67,
1996.

[8] M.R. Lyu, “Handbook of Software Reliability Engineering,” McGraw-Hill and IEEE Computer
Society Press, 1995.

[9] C.L., Karr, E.J. Gentry, “Fuzzy Control of pH using Genetic Algorithms,” IEEE Trans. Fuzzy
Systems, Vol. 1, pp. 46-53, 1993.

[10] A.G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE Trans. on Systems, Man and
Cybernetics. Vol. 1, pp. 364-378, 1971.

[11] W. Pedrycz, “An Identification Algorithm in Fuzzy Relation System,” Fuzzy Sets and System, Vol.
13, pp. 153-167, 1984.

[12] S.K. Oh, W. Pedrycz, “Identification of Fuzzy Systems by means of an Auto-Tuning Algorithm
and Its Application to Nonlinear Systems, Fuzzy sets and Systems, Vol. 115, No. 2, pp. 205-230,
2000.

[13] J.H. Holland, “Adaptation in Natural and Artificial Systems,” The University of Michigan Press,
Ann Arbor, 1975.

[14] D.E. Goldberg, “Genetic Algorithm in Search, Optimization & Machine Learning” Addison
Wesley, Boston, 1989.

330 Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable

[15] A. Kenneth, A. De, “Are Genetic Algorithms Function Optimizers?,” Parallel Problem Solving
from Nature 2, North-Holland Amsterdam, 1992.

[16] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs,” 3rd edition,
Springer-Verlag, Berlin Heidelberg New York, 1996.

[17] S.K. Oh, W. Pedrycz, B.J. Park, “Relation-based Neurofuzzy Networks with Evolutionary Data
Granulation,” Mathematical and Computer Modeling, Vol. 40, No. 7-8, pp. 891-921, 2004.

[18] S.K. Oh, W. Pedrycz, “Fuzzy Polynomial Neuron-Based Self-Organizing Neural Networks,” Int. J.
of General Systems, Vol. 32, No. 3, pp. 237-250, 2003.

Sung-Kwun Oh received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering
from Yonsei University, Seoul, Korea, in 1981, 1983, and 1993, respectively. During
1983-1989, he was a Senior Researcher of R&D Lab. of Lucky-Goldstar Industrial
Systems Co., Ltd. From 1996 to 1997, he was a Postdoctoral Fellow with the Department
of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB,
Canada. He is currently a Professor with the Department of Electrical Engineering,
University of Suwon, Suwon, South Korea. His research interests include fuzzy system,
fuzzy-neural networks, automation systems, advanced computational intelligence, and
intelligent control. He currently serves as an Associate Editor of the KIEE Transactions
on Systems and Control, International Journal of Fuzzy Logic and Intelligent Systems of
the KFIS, and International Journal of Control, Automation, and Systems of the ICASE,
South Korea.

Ho-Sung Park received the BSc, MSc, and PhD. degrees in Control and Instrumentation
Engineering from Wonkwang University, Korea, in 1999, 2001, and 2005, respectively.
During 2005-2006, he was a full-time lecturer in the Department of Electrical Electronic
and Information Engineering, Wonkwang University, Korea. From 2006 to 2007, he was
a Postdoctoral Fellow with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. He is currently a Research Professor in the
Industry Administration Institute, University of Suwon, Korea. His research interests
include Fuzzy Inference System, Neural Network, Fuzzy-Neural Network, Genetically
Optimization Algorithm, Granular Computing, Neuro-fuzzy Computing, and
Evolutionary Computing.

Chang-Won Jeong received his BS degree in computer engineering from Wonkwang
University in 1993, and M.S. and Ph.D. degrees at dept. of computer engineering from
Wonkwang University in 1998 and 2003, respectively, in South Korea. Currently, he is a
Post.Doc at dept. of computer engineering in Wonkwang University. His main research
interests include distributed object computing, middleware and u-healthcare.

Su-Chong Joo received his BS degree in computer engineering from Wonkwang
University in 1986, and M.S. and Ph.D. degrees at dept. of computer science and
engineering from Chung-Ang University in 1988 and 1992, respectively, in South Korea.
Currently, he is a professor at division of electrical, electronic and information
engineering in Wonkwang University. His main research interests include distributed
real-time computing, distributed object modeling, system optimization, multimedia
database systems and healthcare applications. From Jul. 1993 to Aug. 1994, he was a
Post-Doctoral Fellow at dept. of electrical and computer engineering in University of
Massachusetts at Amherst. Also, from Dec. 2002 to Jan. 2005, he was a research professor
at Dept. of Electrical Engineering and Computer Science in University of California at
Irvine. He is a member of KISS, IASTED, IEEE and IEEE computer society.

