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Abstract 
 

In this paper, we introduce the architecture of Genetic Algorithm (GA) based Feed-forward 
Polynomial Neural Networks (PNNs) and discuss a comprehensive design methodology. A 
conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through 
a network growth process. In order to generate structurally optimized PNNs, a GA-based 
design procedure for each layer of the PNN leads to the selection of preferred nodes (PNs) 
with optimal parameters available within the PNN. To evaluate the performance of the 
GA-based PNN, experiments are done on a model by applying Medical Imaging System 
(MIS) data to a multi-variable software process. A comparative analysis shows that the 
proposed GA-based PNN is modeled with higher accuracy and more superb predictive 
capability than previously presented intelligent models. 
 
 
Keywords: Feed-forward self-organizing neural networks (FSONN), genetic algorithms, 
group method of data handling (GMDH), medical imaging system 
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1. Introduction 

Recently, much attention has been directed towards the advanced techniques of system 

modeling. The panoply of existing methodologies and ensuing detailed algorithms are 
confronted with nonlinear systems and extreme problem dimensionality on a quest for high 
accuracy and generalization capabilities of the ensuing models. 

As the complexity of the system to be modeled increases, experimental data and some 
degree of prior domain knowledge conveyed by the model developer are essential to the 
completion of an efficient design procedure. It is also worth stressing that the nonlinear form 
of the model acts as a two-edged sword: while we gain flexibility to cope with experimental 
data, we are provided with an abundance of nonlinear dependencies that need to be exploited 
in a systematic manner. In particular, when dealing with high-order nonlinear and 
multivariable equations of the model, we require a vast amount of data to estimate its complete 
range of parameters [1][2]. To help alleviate such problems, Feed-forward Self-organizing 
Neural Networks (FSONN) were introduced by Oh et al. [3][4][5][6][18] as a new class of 
networks. These networks come with a high level of flexibility as each processing element 
forming a node can have a different number of input variables and exploit a different order of 
polynomials. Although the FSONN contains flexible model architecture with higher accuracy 
due to its systematic design procedure, it is difficult to obtain a structurally and parametrically 
optimized network because of the limited design of neurons located in each layer of FSONN. 
Accordingly, the FSONN algorithm tends to produce overly complex networks a repetitive 
computational load by the trial and error method and/or a repetitive parameter adjustment by 
the designer, as in the case of the original GMDH algorithm.  

In this study, in solving the problems with the conventional FSONN as well as the GMDH 
algorithm, we introduce a new design approach of GA-based FSONN. Optimal design 
parameters available within the node lead to a structurally and parametrically optimized 
network, which is more flexible and simpler in architecture than the conventional FSONN. 
Furthermore, we introduce an aggregate objective function that deals with training data and 
testing data and elaborate on its optimization to produce a meaningful balance between the 
approximation and generalization abilities of the model. In a nutshell, the objective of this 
study is to develop a general design methodology of GA-based FSONN modeling, come up 
with a logic-based structure for such a model and propose a comprehensive evolutionary 
development environment in which the optimization of the models can be efficiently carried 
out both at the structural and at the parametric levels [7]. To evaluate the performance of the 
proposed model, we exploit MIS data [8] and pH neutralization process data [9]. 

2. The FSONN algorithm and its generic architecture 

2.1 Polynomial Neuron (PN) based FSONN and its architecture 

2.1.1 Polynomial Neuron (PN) 

The PN-based FSONN algorithm [3][4][5] is based on the GMDH [10] method and utilizes a 
class of linear, quadratic, and modified quadraticpolynomals which can be seen in Table 1. By 
choosing the most significant input variables and a certain order of the polynomials among the 
available variety of structures at our disposal, we can construct the best partial description 
(PD) of a polynomial neuron (PN). The individual PNs are expressed as a second-order 
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regression equation. In particular, when combining two inputs at each node as the generic 
structure we arrive at the following relationship: 

jijiji XFXEXDXCXBXAy +++++= 22

 (1) 

In the above expression, A, B, C, D, E, and F are parameters of the model, while y is the 
output of this model. Xi and Xj denote the two inputs. 

The outputs obtained from each of these nodes are then combined to obtain a higher-degree 
polynomial. In this case, a complex Ivakhnenko polynomial is formed. This function usually 
takes on the form 
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where Xi, Xj and Xk are nodal input variables and y is the output of an individual neuron, or 
node. A, Bi, Cij, and Dijk are the coefficients of the Ivakhnenko polynomial. 

The PN-based FSONN design activities have focused over the past years on the 
development of self-organizing, minimal polynomial networks with good generation 
capabilities. Searching for the optimal configuration in the space of all possible Feed-forward 
Self-Organizing Neural Networks is intractable and requires the application of certain 
heuristic rules. The PN-based FSONN leads to self-organizing heuristic hierarchical models of 
high degree equipped with an automatic elimination of undesirable variable interactions. 

 
2.1.2 Polynomial Neuron (PN) based FSONN architecture  

The PN-based FSONN based on a perceptron learning principle with neural network-type 
architecture is used to model the input-output relationship of a complex process system. The 
design of the PN-based FSONN structure continues and involves the generation of some 
additional layers. Each layer consists of nodes (PDs or PNs) for which the number of input 
variables could be the same as in the previous layers or may differ across the network as shown 
in Fig. 1.  
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Fig. 1. A general architecture of PN-based FSONN 
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At each layer, new generations of complex equations are constructed from simple forms. 
The model obtained at each subsequent layer is progressively more complex than the model at 
the preceding layers. To avoid an overfit, the overall data set is divided into two segments. The 
first training set, which is used for the generation of several computing alternative models. The 
second is the testing set, which is used to test the accuracy of each model generated and for the 
selection of the best models at each layer. The number of layers is increased until the newer 
models begin to exhibit weaker predictability than their predecessors. This indicates the 
overfitting of the model. The final model is defined as a function of two, three, or four 
variables. The network result is a very sophisticated model obtained from a very limited data 
set. 

We introduce two types of generic PN-based FSONN structures, namely the basic and the 
modified PN-based FSONN. Moreover, for each type of topology we identify two schemes 
[3][4][5]. In what follows, the PN-based FSONN emerges as a versatile architecture whose 
topology depends on the regression polynomial of a PN.  

 

Table 1. Different forms of regression polynomials forming a PN 

                            Number of inputs 

Order of  the polynomial 
1 2 3 

1  (Type 1) Linear Bilinear Trilinear 

2  (Type 2) Quadratic Biquadratic-1 Triquadratic-1 

2  (Type 3) Quadratic Biquadratic-2 Triquadratic-2 

1 : Basic type   2 : Modified type 

2.2 Fuzzy Polynomial Neuron (FPN) based FSONN and its topology 

2.2.1 Fuzzy polynomial neuron (FPN) 

As visualized in Fig. 2, the FPN consists of two basic functional modules. The first labeled  F, 
is a collection of fuzzy sets ({Al} and {Bk}) that form an interface between the input and the 
processing segment realized by the neuron. The second module denoted here by P ,refer to  
function-based nonlinear (polynomial) processing. This nonlinear processing involves some 
input variables xi and xj. Quite commonly, we will be using the polynomial form of the 
nonlinearity, hence the name of the fuzzy polynomial processing unit. The use of polynomials 
is motivated by their generality. In particular, the ones used include constant and linear 
mappings.  These are used quite often in rule-based systems. 
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Fig. 2. The general architecture of the generic FPN module 
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In other words, FPN realizes a family of multiple-input single-output rules. Each rule has 

the form 
)( lkjilkkqlp a,x,xPiszTHENBisxandAisxIF                               (3) 

where alk is a vector of the parameters of the conclusion part of the rule while Plk(xi, xj, alk) 
denotes the regression polynomial forming the consequence part of the fuzzy rule which uses 
several types of high-order polynomials in addition the constant function forming the simplest 
version of the consequence. You can see this in Table 2.  

Alluding to the input variables of the FPN, especially a way in which they interact with the 
two functional blocks shown there, we use the notation FPN (xp, xq; xi, xj) to explicitly point at 
the variables. The processing of the FPN is governed by the following expressions that are in 
line with the rule-based computing existing in the literature [11][12]. 
 
2.2.2 Fuzzy Polynomial Neuron (FPN) based FSONN architecture 
The topology of the FPN-based FSONN implies the ensuing learning mechanisms; in the 
description below we indicate some of these learning issues that permeate the overall 
architecture. First, the network is homogeneous in the sense that it is constructed with the use 
of FPNs. It is also heterogeneous in the sense that FPNs can be very different and this 
contributes to the generality of the architecture. The network may contain a number of hidden 
layers each of them of a different size, which is to say having different of nodes. The nodes 
may have a different number of inputs and this triggers a certain pattern of network 
connectivity.  FPN itself promotes a number of interesting design options, see Fig. 3.  
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These alternatives distinguish between two categories, a design-based category and a 
GA-based category. The design-based category concerns a choice of the membership function 
(MF) type, the consequent input structure of the fuzzy rules, and the number of MFs for each 
input variable. The latter is related to a choice of the number of inputs, the collection of a 
specific subset of input variables, and its associated polynomial order.  This is done after 
realizing a consequence of the rules based on the fuzzy inference method. 

Proceeding with the FPN-based FSONN architecture, essential design decisions have to be 
made with regard to the number of input variables, the order of the polynomial forming the 
conclusion of the rules, and a collection of the specific subset of input variables. The 
consequence segment can be expressed by linear, quadratic, or modified quadratic polynomial 
equations as mentioned previously. Especially for the consequence segment, we especially 
consider two kinds of input vector formats in the conclusion segment of the fuzzy rules of the 
1st layer, namely i) selected inputs and ii) entire system inputs, as seen in Table 3. 

i) The input variables of the consequence segment of the fuzzy rules are same as the input 
variables of premise segment. 

ii) The input variables of the consequence segment of the fuzzy rules in a node of the 1st 
layer are same as the entire system input variables and the input variables of the 
consequence segment of the fuzzy rules in a node of the 2nd layer or higher are same as the 
input variables of premise segment. 

 

Table 3. Polynomial type according to the number of input variables in the fuzzy rules conclusion 
segment  

Input vector 

Type of the 

Consequence polynomial 

Selected input 
varialbes in the 

premise part 

Selected input 
varialbes in the 

consequence part 

Entire system 
input variables 

Type T A A B 

Type T* a b B 

 
Where notation A: Vector of the selected input variables (x1, x2,…, xi), B: Vector of all system 
input variables (x1, x2, …xi, xj …), Type T: f(A)=f(x1, x2,…, xi) - type of a polynomial function 
standing in the consequence segment of the fuzzy rules, Type T*: f(B)=f(x1, x2, …xi, xj …) - 
type of a polynomial function occurring in the consequence segment of the fuzzy rules 

As shown in Table 3, A and B describe vectors of the selected input variables and the entire 
collection of input variables respectively. Proceeding with each layer of the FPN-based 
FSONN, the design alternatives available within a single FPN can be carried out with regard to 
the entire collection of the input variables or its selected subset as they occur in the 
consequence segment of fuzzy rules encountered at the 1st layer. Following these criteria, we 
distinguish between two fundamental types (Type T, Type T*), namely Type T- the input 
variables in the conditional part of fuzzy rules are kept as those in the conclusion segment of 
the fuzzy rules (Zi of (A) FPN (xp, xq: xi, xj)). Type T*- the entire collection of the input 
variables is kept as input variables in the conclusion segment of the fuzzy rules (Zi of (B) FPN 
(xp, xq: x1, x2, x3, x4)). 

3. Genetic optimization of FSONN 

When we construct the PNs or FPNs of each layer in the conventional FSONN, such 
parameters as the number of input variables, the order of polynomials, and input variables 
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available within a PN are selected in advance by the designer. That is, the designer must have 
pre-determined information related to the networks such as the number of system input 
variables and the polynomial order. Because the conventional FSONN is a heuristic method, it 
does not guarantee that the constructed FSONN is optimal network architecture. Accordingly, 
in order to generate a structurally and parametrically optimized FSONN network, such 
parameters need to be optimal. 

In order to solve this problem, we use genetic algorithms that are a stochastic global search 
technique based on the principles of evolution, natural selection and genetic recombination by 
simulating survival of the fittest in a population of potential solutions to the problem at hand 
[13][14][15][16]. 

In this study, for the optimization of the FSONN model, GAs use the serial method of binary 
type, a roulette wheel in the selection operator, a one-point crossover in the crossover operator, 
and an invert in the mutation operator. As the roulette-wheel operator’s stochastic 
characteristic, when creating a new generation by selection operators, we will choose the best 
chromosome from the last generation. To reduce the stochastic errors of roulette wheel 
selection, we use an elitist strategy [15]. The overall structural optimization process of 
FSONN using GAs is shown in Fig. 4-5.  

As mentioned, when we construct PNs or FPNs of each layer in the conventional FSONN, 
such parameters as the number of input variables, the order of the polynomial and input 
variables available within a PN or a FPN are fixed in advance by the designer. This could have 
frequently contributed to the difficulties in the design of an optimal network. To overcome this 
apparent drawback, we resort to genetic optimization.  

4. GA-based FSONN algorithm 

The framework of the design procedure of Feed-forward PNNs (Editor’s note: Already 
defined earlier, no need to do it again) consists of the following steps: 
[Step 1] Determine system’s input variables 
Define the system’s input variables as xi(i=1, 2, …, n) related to output variable y. If required, 
the data can be normalized as well. 
[Step 2] Form training and testing data 
 

E

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Genetic
design

Genetic
design

Layer
Generation

1st
layer

1st
layer

S

E : Entire inputs, S : Selected PNs, z
i 
: Preferred outputs in the ith stage(z

i
=z

1i
, z

2i
, ..., z

Wi
)

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

PNs Selection

Layer
Generation

S

2nd stage

z
1

z
2

Genetic
design

Genetic
design

2nd
layer

2nd
layer

1st stage

 
Fig. 4. Overall structural optimization process of PN-based FSONN using Gas 

 



316       Oh et al.: GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable 

E

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

FPNs Selection

Genetic
design

Genetic
design

Layer
Generation

1st
layer

1st
layer

S

E : Entire inputs, S : Selected FPNs, zi : Preferred outputs in the ith stage(zi=z1i, z2i, ..., zWi)

Selection of the no.
of input variables

Selection of
input variables

Selection of the
polynomial order

FPNs Selection

Layer
Generation

S

2nd stage

z
1

z
2

Genetic
design

Genetic
design

2nd
layer

2nd
layer

1st stage

Fuzzy inference &
fuzzy identification

Initial information for
fuzzy inference method
& fuzzy identification

Initial information for
fuzzy inference method
& fuzzy identification

Fuzzy inference &
fuzzy identification

Fuzzy inference
method

MF Type

Structure of the
consequent part of fuzzy

rules

Simplified or regression
polynomial fuzzy inference

Triangular or Gaussian

Selected input variables
or entire system input

variables

Fig. 5. Overview genetically-driven structural optimization process of FPN-based FSONN 
 

The input-output data set (xi, yi)=(x1i, x2i, …, xni, yi), i=1, 2, …, N where N is the total amount 
of data is divided into two parts, that is, training and testing datasets. Denote their sizes by Nt 
and Nc respectively. Obviously we have N=Nt+Nc. The training data set is used to construct the 
FSONN model. Next, the testing data set is used to evaluate the quality of the model. 
[Step 3] Determine the initial information for constructing the FSONN structure 

We determine the initial information for the FSONN structure in the following manner: 
a) According to the stopping criterion, two termination methods are exploited here: 

 - Comparison of a minimal identification error of the current layer with that of the 
previous layer of the network 

 - The maximum number of generations predetermined by the designer to achieve a 
balance between model accuracy and its complexity 

b) The maximum number of input variables arriving at each node in the corresponding 
layer 
c) The total number W of nodes to be retained (selected) at the next generation of the 
FSONN algorithm 
d) The value of the weighting factor of the aggregate objective function 

[Step 4] Decide a structure of the PN or FPN-based FSONN using genetic design 
The concerns are with the selection of the number of input variables, the polynomial order, 

and the input variables to be assigned in each node of the corresponding layer. We determine 
the structure of the PN or FPN-based FSONN using genetic design.  

When it comes to the organization of the chromosome representing the structure of the 
FSONN, we divide the chromosome to be used for genetic optimization into three 
sub-chromosomes as shown in Fig. 6-7. The 1st sub-chromosome contains the number of input 
variables, the 2nd sub-chromosome involves the order of the polynomial of the node, and the 
3rd sub-chromosome contains input variables for the corresponding node. All these elements 
are optimized when running the GA. 
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Fig. 6. The PN design available in FSONN architecture by using a GA chromosome 

 
Each sub-step of the genetic design procedure of three kinds of parameters available within 

the PN or the FPN is structured as follows: 
[Step 4-1] Selection of the number of input variables (1st sub-chromosome)  
[Step 4-2] Selection of the order of polynomials (2nd sub-chromosome) 
[Step 4-3] Selection of input variables (3rd sub-chromosome) 
[Step 5] Estimate the coefficients of the polynomial corresponding to the selected node (PN or 
FPN) 
[Step 5-1] In case of a PN 
The vector of coefficients Ci is derived by minimizing the mean squared error between yi and 
zmi. 
The vector of coefficients Ci is derived by minimizing the mean squared error between yi and 
zmi. 
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Using the training data subset, this gives rise to the set of linear equations 

iiCXY =  (5) 

Evidently, the coefficients of the PN of nodes in each layer are determined by the standard 
least square method.  
[Step 5-2] In case of a FPN 
At this step, the regression polynomial inference is considered. The inference method deals 
with regression polynomial functions viewed as the consequents of the rules. Regression 
polynomials standing in the conclusion segment of fuzzy rules are given as different types of 
Type 1, 2, 3, or 4, see Table 2. In the fuzzy inference, we consider two types of membership 
functions, namely triangular and Gaussian-like membership functions. 
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Fig. 7. The genetic FPN design used in FSONN architecture 
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Fig. 8. Triangular and Gaussian-like membership function and their parameters 
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The regression fuzzy inference reasoning scheme is envisioned: The consequence segment 
can be expressed by constant, linear, quadratic, or modified quadratic polynomial equations as 
shown in Table 2. The use of the regression polynomial inference method gives rise to the 
expression 

),,,(,,: 2111 kiiikki
i xxxfyTHENAisxandAisxIFR LL =                      (6) 

 
where Ri is the i-th fuzzy rule, xl(l=1, 2, ¼, k) is an input variable, Aik is a membership function 
of fuzzy sets, k denotes the number of the input variables, fi(·) is a regression polynomial 
function of the input variables. 
The calculation of the numeric output of the model is carried out in the well-known form 
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where, n is the number of fuzzy rules, ŷ  is the inferred value, im is the premise fitness of Ri 

and im̂  is the normalized premise fitness of im . 
Here we consider the regression polynomial function of the input variables. The consequence 
parameters are produced by the standard least squares method. 
This procedure is implemented repeatedly for all nodes of the layer and also for all FSONN 
layers, starting from the input layer and moving to the output layer. 
[Step 6] Select nodes with the best predictive capability, and construct their corresponding 
layer 

As shown in Fig. 6-7, all nodes of the corresponding layer of FSONN architecture are 
constructed by genetic optimization. The generation process of PNs or FPNs in the 
corresponding layer is described in detail as a design procedure of 9 sub-steps. The sequence 
of sub-steps is as follows: 
Sub-step 1) We determine the initial genetic information for the generation of the FSONN 
architecture. That is, the number of generations and individuals, mutation rate, crossover rate, 
and the length of a chromosome. 
Sub-step 2) The nodes are generated by genetic design.  There are as many variations as the 
number of individuals in the 1st generation. One individual takes the same role as one node in 
the FSONN architecture and each individual is operated by GAs as shown in Fig. 6-7. That is, 
the number of input variables, the order of the polynomials, and the input variables as one 
individual are selected by GAs. The polynomial parameters are produced by the standard least 
squares method. 
Sub-step 3) To evaluate the performance of PNs in each population, we use an aggregate 
objective function that takes into account a sound balance between approximation and 
prediction capabilities of the one as shown in Eq. (5). Then from the performance index 
obtained in Eq. (5), we calculate the fitness function of Eq. (6). The objective function, or cost 
function, is employed to decrease the error rate and to increase the predictability of the model 
- that is, the objective function includes the performance index for training (PI) and the 
performance index for evaluation (EPI), that are combined by means of a weighting factor q. 
The objective function is a basic instrument guiding the evolutionary search in a solution space 
[12]. The objective function includes both the training data and the testing data and comes as a 
convex sum of two components. 
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We define the fitness function of the genetic algorithm as follows: 
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PI and EPI denote the performance index for the training data and testing data respectively. 
Moreover, q is a weighting factor that allows us to strike a balance between the performances 
of the models for training and testing data. The aggregate object function depends upon the 
values of a weighting factor. Both PI and EPI are considered and the proper selection of q 
establishes the direction of optimization to maintain a balance between approximation and 
generalization. Model selection is performed from the minimization of this aggregate 
objective function. 
Sub-step 4) To produce the next generation, we carry out selection, crossover, and mutation 
operations using initial genetic information and the fitness values obtained from sub-step 3. 
Sub-step 5) The nodes are rearranged in descending order on the basis of the calculated fitness 
values (F1, F2, …, Fz). We unify the nodes with duplicated fitness values. In the case that more 
than one node has the same fitness value, among the rearranged nodes on the basis of the 
fitness values. We choose several nodes characterized by the best fitness values. Here, we use 
the pre-defined number W of nodes with better predictive capability that must be preserved for 
optimal operation of the next iteration in the PNN algorithm. The outputs of the retained nodes 
serve as inputs in the subsequent layer of the network. There are two cases as to the number of 
the retained nodes, that is, 

(i) If z<W, then the number of the nodes retained for the next layer is equal to z. 
(ii) If z³W, then for the next layer, the number of the retained nodes is equal to W. 

Sub-step 6) For the elitist strategy, we select the node that has the highest fitness value among 
the selected nodes (W). 
Sub-step 7) We generate new individuals of the next generation using operators of GAs 
obtained from sub-step 4. Then we use the elitist strategy. This sub-step carries out by 
repeating sub-steps 2-6. Especially in sub-step 5, we replace the node that has the lowest 
fitness value in the current generation with the node that has the highest fitness value in the 
previous generation obtained from sub-step 6. 
Sub-step 8) We combine the nodes (W individuals) obtained in the previous generation with 
the nodes (W individuals) obtained in the current generation. In the sequel, W nodes that have 
higher fitness values among them (2W) are selected. That is, this sub-step carries out by 
repeating sub-step 5.  
Sub-step 9) Until the last generation, this sub-step carries out by repeating sub-steps 7-8. The 
iterative process generates the optimal nodes of a layer in the FSONN model. 
[Step 7] Check the termination criterion 
The termination condition that controls the growth of the model consists of two components, 
the performance index and the size of the network, expressed in terms of the maximal number 
of layers. As far as the performance index is concerned that reflects a numeric accuracy of the 
layers, termination is straightforward and comes in the form: 

*1 FF £  (10) 

Where, F1 denotes a maximal fitness value occurring at the current layer whereas F* stands 
for a maximal fitness value that occurred at the previous layer. As far as the depth of the 
network is concerned, the generation process is stopped at a depth of less than five layers. This 
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size of the network has been experimentally found to form a sound compromise between the 
high accuracy of the resulting model and its complexity and generalization abilities. 
In this study, we use the Mean Squared Error (MSE) for measure of performance index. 
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where yp is the p-th target output data and pŷ
 stands for the p-th actual output of the model for 

this specific data point. N is training (PIs) or testing (EPIs) input-output data pairs and E is an 
overall performance index defined as a sum of the errors for the N. 
[Step 8] Determine new input variables for the next layer 
If Eq. (10) has not been satisfied, the model has to be expanded. The outputs of the preserved 
nodes (z1i, z2i, …, zWi) serves as new inputs to the next layer (x1j, x2j, …, xWj) (j=i+1). This is 
captured by the expression. 

wiwjijij zxzxzx === ,,, 2211 K
 (12) 

The GA-based FSONN algorithm is carried out by repeating steps 4-8 consecutively.  

5. Experimental Studies 

In this section, we illustrate the development of the GA-based FSONN and show its 
performance for a number of well-known and widely used datasets. The first one is a Medical 
Imaging System data which was studied previously in software process modeling [8]. The 
other one deals with pH neutralization process data [9]. 

5.1 Medical Imaging System Data 

This section includes comprehensive numeric studies illustrating the design of the GA-based 
PNN model. We use a well-known MIS [8] data. 
This data set concerns a MIS data set which involves 390 software modules written in Pascal 
and FORTRAN. These modules consist of approximately 40,000 lines of code. To design an 
optimal model from the MIS, we study 11 system input variables such as, Total lines of code 
including comments (LOC), Total code lines (CL), Total character count (TChar), Total 
comments (TComm), Number of comment characters (MChar), Number of code characters 

(DChar), Halstead’s program length (N), Halstead’s estimated program length ( N̂ ), Jensen’s 
estimator of program length (NF), McCabe’s cyclomatic complexity (V(G)), and Belady’s 
bandwidth metric (BW). The output variable of the model is the number of reported changes - 
Change Reports (CRs). In case of the MIS data, the performance index is defined as the mean 
squared error (MSE) as Eq. (11). 

Table 4 summarizes the list of parameters used in the genetic optimization of the PN-based 
and the FPN-based FSONN. 
 

Table 4. Computational aspects of the genetic optimization of PN-based and FPN-based FSONN  

 Parameters 1st layer 2nd layer 3rd layer 4th layer 5th layer 
PN 300 

Maximum generation 
FPN 100 
PN 150 

Total population size 
FPN 60 
PN 30(l=2~5), 60(l=9) 

GA 

Selected population 
size (W) FPN 30(l=4) 
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PN 3+3+30(l=2~5), 5+3+60 (l=9) 
String length 

FPN 3+3+30(l=4) 
Crossover rate 0.65 
Mutation rate 0.1 

Maximal no. (Max) of inputs to 
be selected 

1≤l≤Max (2~5, 9) PN 
based 

FSONN Polynomial type (Type T) (#) 1≤T≤3 
Maximal no. (Max) of inputs to 

be selected 
1≤l≤Max (2~4) 

Polynomial type (Type T) of the 
consequent part of fuzzy rules (##)

1≤T≤4 

Type T Consequent input type to be used 
for Type T (###) Type T* Type T 

Membership Function (MF) type Triangular, Gaussian 

FPN 
based 

FSONN 

No. of MFs per input 2 

 l, T, Max: integers, #,  ##and ###: refer to Tables 1-3 respectively. 
5.1.1 Polynomial Neuron (PN) based FSONN 
Fig. 9 depicts the performance index of a PN-based FSONN according to the maximal number 
of inputs to be selected when using q=0.5 and Max=5, 9. 
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(a) Training data                                               (b) Testing data 
Fig. 9. Performance index of a PN-based FSONN according to the maximal number of inputs to be 
selected (q=0.5 and Max=5, 9) 
 

Fig. 10 illustrates the detailed optimal topologies of the PN-based FSONN for 3 layers. As 
shown in Fig. 10, the GA-based design procedure at each stage (layer) of PN-based FSONN 
leads to the selection of preferred nodes (or PNs) with local characteristics (such as the number 
of input variables, the order of the polynomial, and input variables) available within the 
PN-based FSONN. In the sequel, the proposed network enables the architecture to be a 
structurally more optimized and flexible network than the conventional PN-based FSONN. 

Referring to Fig. 10, we adhere to the following notation N T

PNn

: ‘PNn’ denotes the nth node 
(PN) of the corresponding layer, ‘N’ denotes the number of nodes (inputs or PNs) coming to 
the corresponding node, and ‘T’ denotes the polynomial order used in the corresponding node. 
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Fig. 10. Optimal networks structure of PN-based FSONN with 3 layers (q=0.5 and Max=9) 
 

Figs. 11-12 show output comparison and identification errors for the optimal network 
architecture visualized when using 5th layer, q=0.5 and Max=9. 
 
5.1.2 Fuzzy Polynomial Neuron (FPN) based FSONN 
Table 5 summarizes the results when using Types T and T*: According to the maximal 
number of inputs to be selected (Max=2 to 5), the selected polynomial type (T), and its 
corresponding performance index (PI and EPI) were shown when the genetic optimization for 
each layer was carried out. 
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(a) Training data                                     (b) Testing data 
Fig. 11. Original output and model output of MIS data  
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(a) Training data                                     (b) Testing data 
Fig. 12. Errors curve of genetically designed PN-based FSONN 
 

Table 5. Performance index of the network of each layer versus the increase of maximal number of  
inputs to be selected 

 
(a) In case of  Type T 

(a-1) Triangular 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI 
2 1 53.125 29.660 1 45.199 20.724 2 39.693 16.286 1 32.401 14.673 4 30.371 13.887 
3 1 45.305 23.002 1 39.312 16.852 4 35.816 13.699 1 33.750 11.630 3 28.095 9.841 
4 1 39.894 17.070 3 36.852 14.636 3 29.962 12.900 4 33.824 11.262 3 28.691 10.071 
5 1 39.894 17.070 3 36.852 14.636 3 34.848 12.389 1 24.545 9.264 1 23.739 9.080 

(a-2) Gaussian-like 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI 
2 1 50.656 31.288 1 50.252 19.672 2 39.890 17.843 4 32.627 12.554 2 31.645 11.217 
3 1 49.254 24.982 1 41.005 17.618 1 37.149 12.840 1 32.091 11.761 4 26.328 11.342 
4 1 49.254 24.982 1 39.886 15.982 1 32.550 13.956 1 32.512 12.565 1 24.017 10.738 
5 1 49.254 24.982 1 41.034 16.762 1 35.719 12.865 1 37.268 11.765 1 36.571 10.289 

(b) In case of  Type T* 
(b-1) Triangular 

1st layer 2nd layer 3rd layer 4th layer 5th layer Max 
T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI 

2 2 39.499 20.481 1 36.989 13.236 1 36.877 12.800 3 31.181 11.624 1 29.812 10.926 
3 2 39.499 20.481 1 24.322 12.916 1 24.303 12.175 1 24.229 11.063 1 24.086 10.979 
4 1 39.894 17.070 1 36.989 13.236 1 26.614 10.601 1 26.583 10.418 4 26.521 10.164 
5 1 39.894 17.070 1 36.989 13.236 1 36.756 12.683 3 24.888 10.828 1 25.187 10.392 

(b-2) Gaussian-like 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI EPI T PI EPI T PI EPI T PI EPI T PI EPI 
2 2 38.972 21.461 1 35.195 17.341 1 37.376 14.861 2 25.864 13.752 2 24.346 12.549 
3 2 38.972 21.461 1 37.107 13.698 1 28.137 12.391 2 26.864 12.102 1 25.237 10.906 
4 2 38.972 21.461 1 37.100 16.599 1 29.876 13.357 1 32.217 11.654 1 26.921 11.497 
5 2 38.972 21.461 1 37.107 13.698 1 33.259 11.900 1 32.638 9.738 1 35.058 9.150 

 
Fig. 13 shows the values of performance index vis-à-vis number of layers of the GA-based 

FSONN with respect to the maximal number of inputs to be selected as optimal architectures 
of each layer of the network included in Table 5(a)  
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 3, June 2009                                                325 

1 2 3 4 5
20

25

30

35

40

45

50

55

Layer

T
ra

in
in

g
 d

at
a 

er
ro

r

Max - 2 :

Max - 3 :

Max - 4 :

Max - 5 :

1 2 3 4 5
5

10

15

20

25

30

Layer

T
es

ti
ng

 d
at

a 
er

ro
r

 
(a) Triangular 

 

1 2 3 4 5
20

25

30

35

40

45

50

55

Layer

T
ra

in
in

g 
d

at
a 

er
ro

r

Max - 2 :

Max - 3 :

Max - 4 :

Max - 5 :

1 2 3 4 5
10

15

20

25

30

35

Layer

T
es

ti
ng

 d
at

a 
er

ro
r

 
(b) Gaussian-like 

Fig. 13. Performance index of GA-based FSONN 
 

Table 6 summarizes the results of comparative analysis of the proposed model with respect 
to other constructs. 

5.2 pH Neutralization Process Data 

To demonstrate the high modeling accuracy of the proposed model, we apply it to a highly 
nonlinear of pH neutralization of a weak acid and a strong base. This model can be found in a 
variety of practical areas including wastewater treatment, biotechnology processing, and 
chemical processing [9]. pH is the measurement of the acidity or alkalinity of a solution 
containing a proportion of water. 
The system inputs of the proposed model structure consist of the delayed terms of Fb(t) and 
ypH(t) which are input and output of the process, i. e. 
 

1))(ty2),(ty3),(ty1),(tF2),(tF3),(t(F(t)y pHpHpHbbbpH ------=jˆ         (13) 

 
where (t)ŷpH and ypH(t) denote the proposed model output and the actual process output, 

respectively.  Table 7 summarizes the list of parameters used in the genetic optimization of the 
PN-based and the FPN-based FSONN. 
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Table 6. Comparison of identification error with previous models 

Model PI PIs EPIs 
Regression model 36.13   
PNN 8.456   

Simplified  40.753 17.898 
SONFN[17] 

Linear 
Generic 
Type 

Basic 
Architecture  35.745 17.807 

Triangular Type : 2  32.195 18.462 
No. of inputs: 2 

Gaussian Type : 1  49.716 31.423 
Triangular Type : 1  32.251 19.622 

FPNN[18] 
No. of inputs: 3 

Gaussian Type : 1  39.093 19.983 
max-inputs: 5  22.238 12.566 PN-based FSONN 

(θ=0.5) max-inputs: 9 
Type : 1≤T≤3 

7.161 18.043 11.898 
Triangular  23.739 9.080 

Type T 
Gaussian-like  24.017 10.738 
Triangular  24.086 10.979 

Our model 
FPN-based FSONN 
(θ=0.0) 

Type T* 
Gaussian-like  25.237 10.906 

 

Table 7. Computational aspects of the genetic optimization of PN-based and FPN-based FSONN  

 Parameters 1st layer 2nd layer 3rd layer 4th layer 5th layer 
Maximum generation 100 
Total population size 60 

Selected population size (W) 30(l=2~5) 
String length 3+3+30(l=2~5) 

Crossover rate 0.65 

GA 

Mutation rate 0.1 
Maximal no. (Max) of inputs to 

be selected 
1≤l≤Max (2~5) PN 

based 
FSONN Polynomial type (Type T) (#) 1≤T≤3 

Maximal no. (Max) of inputs to 
be selected 

1≤l≤Max (2~4) 

Polynomial type (Type T) of the 
consequent part of fuzzy rules (##)

1≤T≤4 

Type T Consequent input type to be used 
for Type T (###) Type T* Type T 

Membership Function (MF) type Triangular, Gaussian 

FPN 
based 

FSONN 

No. of MFs per input 2 

 l, T, Max: integers, #,  ##and ###: refer to Tables 1-3 respectively.
 
5.2.1 Polynomial Neuron (PN) based FSONN 
Table 8 summarizes the results about PN-based FSONN: According to the maximal number 
of inputs to be selected (Max=2 to 5), the selected polynomial type (Type T), and its 
corresponding performance index (PI) were shown when the genetic optimization for each 
layer was carried out. 

Fig. 14 illustrates the optimization process by visualizing the performance index in 
successive generations of the genetic optimization with Max=5. 
 
Table 8. Performance index of the PN-based FSONN viewed with regard to the increasing number of 

the layers 

1st layer 2nd layer 3rd layer 4th layer 5th layer 
Max 

T PI T PI T PI T PI T PI 
2 2 1.0878 2 0.6401 2 0.5190 2 0.4080 2 0.2582 
3 2 0.9811 2 0.3587 2 0.2472 2 0.1608 2 0.0949 
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4 2 0.8402 2 0.2927 2 0.1990 2 0.1051 2 0.0597 
5 2 0.7553 2 0.3035 2 0.1449 2 0.0637 2 0.0325 

6th layer 7th layer 8th layer 9th layer 10th layer 
Max 

T PI T PI T PI T PI T PI 
2 2 0.2170 2 0.1674 2 0.1402 2 0.1262 2 0.1144 
3 2 0.0613 2 0.0365 2 0.0260 2 0.0199 2 0.0167 
4 2 0.0289 2 0.0142 2 0.0088 2 0.0059 2 0.0040 
5 2 0.0131 2 0.0063 2 0.0033 2 0.0020 2 0.0014 
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Fig. 14. The optimization process reported in term of performance index 
 

5.2.2 Fuzzy Polynomial Neuron (FPN) based FSONN 
Table 9 summarizes the performance of the 1st to 5th layer of the network when changing the 
maximal number of inputs to be selected; here Max was set up to 2 through 5. 
 

Table 9. Performance index of the network of each layer versus the increase of maximal number of  
input to be selected 

 
(a) In case of  Type T 

(a-1) Triangular 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI T PI T PI T PI T PI 
2 3 0.5897 3 0.2445 3 0.0524 3 0.231 3 0.0142 
3 3 0.2445 3 0.0111 3 0.0020 3 5.10e-4 3 2.40e-4 
4 3 1.32e-4 3 1.25e-4 2 1.25e-4 3 1.25e-4 4 1.25e-4 
5 3 1.30e-4 3 1.25e-4 2 1.25e-4 3 1.25e-4 2 1.25e-4 

(a-2) Gaussian-like 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI T PI T PI T PI T PI 
2 3 0.4972 3 0.0659 3 0.0088 4 0.0036 3 0.0015 
3 3 0.0045 3 1.90e-4 3 1.40e-4 3 1.20e-4 4 1.20e-4 
4 3 1.30e-4 3 1.25e-4 2 1.25e-4 4 1.25e-4 4 1.25e-4 
5 3 1.30e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4 2 1.25e-4 

(b) In case of  Type T* 
(b-1) Triangular 

Max 1st layer 2nd layer 3rd layer 4th layer 5th layer 
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T PI T PI T PI T PI T PI 
2 3 1.47e-4 4 1.36e-4 4 1.31e-4 3 1.30e-4 3 1.30e-4 
3 3 1.30e-4 3 1.29e-4 4 1.25e-4 4 1.25e-4 3 1.25e-4 
4 4 1.30e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4 
5 4 1.29e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4 2 1.25e-4 

(b-2) Gaussian-like 
1st layer 2nd layer 3rd layer 4th layer 5th layer Max 

T PI T PI T PI T PI T PI 
2 3 1.36e-4 3 1.31e-4 4 1.30e-4 3 1.30e-4 3 1.30e-4 
3 3 1.30e-4 4 1.25e-4 3 1.25e-4 3 1.25e-4 3 1.25e-4 
4 4 1.30e-4 3 1.25e-4 4 1.25e-4 2 1.25e-4 2 1.25e-4 
5 3 1.30e-4 2 1.25e-4 3 1.25e-4 2 1.25e-4 2 1.25e-4 

 
Fig. 15 (a) illustrate the detailed optimal topologies of FPN-based FSONN for 1 layer when 

using triangular MF: the results of the network have been reported as PI=1.29e-4 for Max=5 
(see Table 9(b-1)). And also Fig. 15 (b) illustrates the detailed optimal topologies of 
FPN-based FSONN for 1 layer in case of Gaussian-like MF: those are quantified as 
PI=1.30e-4 for Max=3 (see Table 9(b-2)).  
 

ŷ

F
b
(t-3)

F
b
(t-2)

F
b
(t-1)

FPN
1

5 4
T

pH
(t-3)

TpH(t-2)

TpH(t-1)                     

ŷ
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Fig. 15. FPN-based FSONN architecture 
 

Table 10 gives a comparative summary of the network with other models. The experimental 
results clearly reveal that it outperforms the existing models in terms of better approximation 
capabilities. 
 
Table 10. Comparative analysis of the performance of the network; considered are models reported in 
the literature 

Model PI 
Case 1 0.0015 Basic type 

(Layer : 15) Case 2 0.0052 
Case 1 0.0039 

PNN[3] 
Modified type 
(Layer : 10) Case 2 0.0124 

1≤l≤2 0.1144 

1≤l≤3 0.0167 

1≤l≤4 0.0040 
PN-based FSONN 
(Layer : 10) 

1≤l≤5 

Type : 1≤T≤3 

0.0014 

Triangular 1.25e-4 
Type T 

Gaussian-like 1.25e-4 
Triangular 1.25e-4 

Our model 

FPN-based FSONN 
(Layer : 5) 

Type T* 
Gaussian-like 1.25e-4 
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6. Conclusions 

In this study, the GA-based design procedure of Feed-forward Self-Organizing Neural 
Networks (FSONN) and its design methodology were proposed to construct optimal model 
architecture for nonlinear and complex system modeling. The design methodology comes with 
hybrid structural optimization and parametric learning viewed as two phases of modeling 
building. That is, the one phase (hybrid structural optimization) is realized via both GAs and a 
structural phase of an evolutionary algorithm as the main characteristics of the GMDH method 
while the other phase (parametric optimization) is carried out by a standard least square 
estimation (LSE)-based learning. The comprehensive experimental studies involving 
well-known datasets, MIS data and pH neutralization process data, quantify a superb 
performance of the network in comparison to the existing models. First of all, we could 
efficiently search for the optimal network architecture (structurally and parametrically 
optimized network) by the design methodology of GA-based FSONN in comparison to that of 
the conventional FSONN. 
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