DOI QR코드

DOI QR Code

다결정 Ge1-xMnx 박막에서 Ge3Mn5 상의 형성과 특성

Formation of Ferromagnetic Ge3Mn5 Phase in MBE-grown Polycrystalline Ge1-xMnx Thin Films

  • Lim, Hyeong-Kyu (School of Materials Engineering, Chungnam National University) ;
  • Anh, Tran Thi Lan (School of Materials Engineering, Chungnam National University) ;
  • Yu, Sang-Soo (School of Materials Engineering, Chungnam National University) ;
  • Baek, Kui-Jong (School of Materials Engineering, Chungnam National University) ;
  • Ihm, Young-Eon (School of Materials Engineering, Chungnam National University) ;
  • Kim, Do-Jin (School of Materials Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (School of Materials Engineering, Chungnam National University) ;
  • Kim, Chang-Soo (Korea Research Institute of Standards and Science)
  • 발행 : 2009.06.30

초록

다결정 $Ge_{1-x}Mn_x$ 박막의 자기적 상들에 관한 연구가 이루어졌다. Molecular beam epitaxy(MBE) 장비를 이용해 $400^{\circ}C$ 에서 $Ge_{1-x}Mn_x$ 박막을 성장시켰다. $Ge_{1-x}Mn_x$ 박막의 캐리어 유형은 P타입 이였고, 전기 비저항 값은 $4.0{\times}10^{-2}{\sim}1.5{\times}10^{-4}ohm-cm$이었다. 자기적인 특성과 미세구조의 분석에 기초하여 $Ge_{1-x}Mn_x/SiO_2$/Si(100) 박막에 310 K 이내의 큐리에온도를 지닌 강자성의 $Ge_3Mn_5$ 상이 형성되었음을 알 수 있었다. 게다가, $Ge_3Mn_5$ 상이 형성된 $Ge_{1-x}Mn_x$ 박막은 20 K, 9 T의 자기장에서 약 9%의 음의 자기저항을 보였다.

Magnetic phases of polycrystalline $Ge_{1-x}Mn_x$ thin films were studied. The $Ge_{1-x}Mn_x$ thin films were grown at $400^{\circ}C$ by using a molecular beam epitaxy. The $Ge_{1-x}Mn_x$thin films were p-type and electrical resistivities were $4.0{\times}10^{-2}{\sim}1.5{\times}10^{-4}ohm-cm$. Based on the analysis of magnetic characteristics and microstructures, it was concluded that the ferromagnetic phase formed on the $Ge_{1-x}Mn_x/SiO_2$/Si(100) thin films was $Ge_3Mn_5$ phase which has about 310 K of Curie temperature. Moreover, the $Ge_{1-x}Mn_x$ thin film which had $Ge_3Mn_5$ phase showed the negative magnetoresistance to be about 9% at 20 K when the magnetic field of 9 T was applied.

키워드

참고문헌

  1. Y. D. Park, et al., Science, 295, 651 (2002). https://doi.org/10.1126/science.1066348
  2. H. Ohno, et al., Nature, 408, 944 (2000). https://doi.org/10.1038/35050040
  3. J. K. Furdyna, et al., J. Appl. Phys., 61(8), 15, 3526 (1987).
  4. P. J. Wellmann, et al., Appl. Phys. Lett., 71, 2532 (1997) https://doi.org/10.1063/1.120109
  5. N. Yamada, et al., J. Phys. Soc. Japan., 55(11), 3721 (1986). https://doi.org/10.1143/JPSJ.55.3721
  6. Y. M. Cho, et al., J. Magn. Magn. Mater., 282, 385 (2004). https://doi.org/10.1016/j.jmmm.2004.04.089
  7. Y. E. Ihm, S. S. Yu, et al., J. Magn. Magn. Mater., 272, E1539 (2004). https://doi.org/10.1016/j.jmmm.2003.12.800
  8. N. Yamada, et al., J. Phys. Soc. Japan., 59, 273 (1990) https://doi.org/10.1143/JPSJ.59.273
  9. Y. D. Park, et al., Appl. Phys. Lett., 718, 2739 (2001). https://doi.org/10.1063/1.1369151
  10. H. Takizawa, et al., J. Solid State Chemistry, 88, 384 (1990). https://doi.org/10.1016/0022-4596(90)90232-M
  11. H. Aakinaga, et al., Appl. Phys. Lett., 72, 3368 (1998). https://doi.org/10.1063/1.121606