Antifibrotic Activity of LCC, a Cerebroside of Lycium chinense Fruit, in Bile Duct-Ligated Rats

  • Kim, Sun-Yeou (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, Hong-Pyo (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Yang, Hye-Kyung (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Lee, Mi-Na (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Ryu, Hyo-Jeong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Jang, Young-Pyo (College of Pharmacy, Kyung Hee University) ;
  • Sung, Sang-Hyun (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kim, Young-Choong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
  • Published : 2009.06.30

Abstract

We previously reported that a novel cerebroside, LCC, isolated from the fruits of Lycium chinense (Solanaceae), significantly exerted hepatoprotective activity against both the carbon tetrachloride-induced and galactosamine-induced toxicities in primary cultures of rat hepatocytes. In the present study, we further attempted to determine the effect of LCC on hepatic fibrosis in animal model. Hepatic fibrosis was induced in rats by bile duct ligation/scission (BDL) for a period of 5 weeks. Treatment of BDL rats with LCC significantly reduced collagen deposition and the activities of serum alkaline phosphatase and ${\gamma}$-glutamyl transpeptidase. In addition, the LCC treatment of BDL rats significantly preserved the decreased hepatic glutathione as well as the activities of glutathione reductase and catalase in BDL rats. From the results, it can be speculated that LCC might exert antifibrotic activity in rats with BDL, in part, through the preservation of antioxidant enzymes and hepatic glutathione.

Keywords

References

  1. Aoyagi, M., Sakaida, I., Suzuki, C., Segawa, M., Fukumoto, Y., and Okita, K., Prolyl 4-hydroxylase inhibitor is more effective for the inhibition of proliferation than for inhibition of collagen synthesis of rat hepatic stellate cells. Hepatol. Res. 23, 1-6 (2002) https://doi.org/10.1016/S1386-6346(01)00162-0
  2. Beers, R.F. and Sizer, I.W., A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140 (1952)
  3. Benedetti, A., Alvaro, D., Bassotti, C., Gigliozzi, A., Ferretti, G., La Rosa, T., Di Sario, A., Baiocchi, L., and Jezequel, A.M., Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology 26, 9-21 (1997) https://doi.org/10.1002/hep.510260102
  4. Bickel, M., Baringhaus, K.H., Gerl, M., Günzler, V., Kanta, J., Schmidts, L., Stapf, M., Tschank, G., Weidmann, K., and Werner, U., Selective inhibition of hepatic collagen accumulation in experimental liver fibrosis in rats by a new prolyl 4-hydroxylase inhibitor. Hepatology 28, 404-411 (1998) https://doi.org/10.1002/hep.510280217
  5. Bulle, F., Mavier, P., Zafrani, E.S., Preaux, A.M., Lescs, M.C., Siegrist, S., Dhumeaux, D., and Guellaën, G., Mechanism of γ-glutamyl transpeptidase release in serum during intrahepatic and extrahepatic cholestasis in the rat: A histochemical, biochemical and molecular approach. Hepatology 11, 545-550 (1990) https://doi.org/10.1002/hep.1840110404
  6. Carlberg, I. and Mannervik, B., Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250, 5475-5480 (1975)
  7. Dueland, S., Reichen, J., Everson, G.T., and Davis, R.A., Regulation of cholesterol and bile acid homeostasis in bile-obstructed rats. Biochem. J. 280, 373-377 (1991)
  8. Flohe, L. and Gunzler, W.A., Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121 (1984) https://doi.org/10.1016/S0076-6879(84)05015-1
  9. Fox, E.S., Kim, J.C., and Tracy, T.F., NF-kappaB activation and modulation in hepatic macrophages during cholestatic injury. J. Surg. Res. 72, 129-134 (1997) https://doi.org/10.1006/jsre.1997.5172
  10. Friedman, S.L., Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol. 1, 98-105 (2004) https://doi.org/10.1038/ncpgasthep0055
  11. Glossmann, H. and Neville, D.M., Glutamyl transferase in kidney brush border membranes. FEBS Lett. 19, 340-344 (1972) https://doi.org/10.1016/0014-5793(72)80075-9
  12. Gualdi, R., Casalgrandi, G., Montosi, G., Ventura, E., and Pietrangelo, A., xcess iron into hepatocytes is required for activation of collagen type I gene during experimental siderosis. Gastroenterology 107, 1118-1124 (1994)
  13. Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathione S-transferases. J. Biol. Chem. 249, 7130-7135 (1974)
  14. Hernandez-Munoz, R., Diaz-Munoz, M., Lopez, V., Lopez-Barrera, F., Yanez, L., Vidrio, S., Aranda-Fraustro, A., and Chagoya de Sanchez, V., Balance between oxidative damage and proliferative potential in an experimental rat model of CCl4-induced cirrhosis: Protective role of adenosine administration. Hepatology 26, 1100-1110 (1997)
  15. Hissin, P.J. and Hilf, R., A fluorometric method of determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226 (1976) https://doi.org/10.1016/0003-2697(76)90326-2
  16. Hui, A.Y. and Friedman, S.L., Molecular basis of hepatic fibrosis. Expert Rev. Mol. Med. 5, 1-23 (2003) https://doi.org/10.1017/S1462399403005684
  17. Jamall, I.S., Finelli, V.N., and Que Hee, S.S., A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal. Biochem. 112, 70-75 (1981) https://doi.org/10.1016/0003-2697(81)90261-X
  18. Jimenez, W., Pares, A., Caballeria, J., Heredia, D., Bruguera, M., Torres, M., Rojkind, M., and Rodes, J., Measurement of fibrosis in needle liver biopsies: evaluation of a colorimetric method. Hepatology 5, 815-818 (1985) https://doi.org/10.1002/hep.1840050517
  19. Kamimura, S., Gaal, K., Britton, R.S., Bacon, B.R., Triadafilopoulos, G., and Tsukamoto, H., Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology 16, 448-453 (1992) https://doi.org/10.1002/hep.1840160225
  20. Kim, K.Y., Schuppan, D., and Kim, J.B., The establishment of experimental liver fibrosis model in rats by two different method of biliary obstruction. Kor. J. Lab. Ani. Sci. 9, 39-48 (1993)
  21. Kim, S.Y., Choi, Y., Huh, H., Kim, J., Kim, Y.C., and Lee, H.S., New antihepatotoxic cerebroside from Lycium chinense fruits. J. Nat. Prod. 60, 274-276 (1997) https://doi.org/10.1021/np960670b
  22. Kim, S.Y., Lee, E.J., Kim, H.P., Kim, Y.C., Moon, A., and Kim, Y.C., A novel cerebroside from Lycii Fructus preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. Biol. Pharm. Bull. 22, 873-875 (1999) https://doi.org/10.1248/bpb.22.873
  23. Kim, S.Y., Lee, E.J., Kim H.P., Lee H.S., and Kim Y.C., LCC, a cerebroside from Lycium chinense, protects primary cultured rat hepatocytes exposed to galactosamine. Phytother Res. 14, 448-451 (2000) https://doi.org/10.1002/1099-1573(200009)14:6<448::AID-PTR635>3.0.CO;2-Q
  24. Kountouras, J., Billing, B.H., and Scheuer, P.J., Prolonged bile duct obstruction: A new experimental model for cirrhosis in the rat. Br. J. Exp. Pathol. 65, 305-311 (1984)
  25. Krahenbuhl, S., Talos, C., Lauterburg, B.H., and Reichen, J., Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats. Hepatology 22, 607-612 (1995) https://doi.org/10.1002/hep.1840220234
  26. Loguercio, C., Federico, A., Trappoliere, M., Tuccillo, C., de Sio, I., Di Leva, A., Niosi, M., DAuria, M.V., Capasso, R., Del Vecchio Blanco, C., and Real Sud Group, The effect of a silybin-vitamin Ephospholipid complex on nonalcoholic fatty liver disease: a pilot study. Dig. Dis. Sci. 52, 2387-2395 (2007) https://doi.org/10.1007/s10620-006-9703-2
  27. Lopez-de Leon, A. and Rojkind, M.A., Simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J. Histochem. Cytochem. 33, 737-743 (1985) https://doi.org/10.1177/33.8.2410480
  28. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin Phenol regeant. J. Biol. Chem. 193, 265- 275 (1951)
  29. Mullen, K.D. and McCullough, A.J., Problems with animal models of chronic liver disease: Suggestions for improvement in standardization. Hepatology 9, 500-503 (1989) https://doi.org/10.1002/hep.1840090326
  30. Muriel, P., Nitric oxide protection of rat liver from lipid peroxidation, collagen accumulation, and liver damage induced by carbon tetrachloride. Biochem. Pharm. 56, 773-779 (1998) https://doi.org/10.1016/S0006-2952(98)00220-2
  31. Muriel, P. and Moreno, M.G., Effects of silymarin and vitamins E and C on liver damage induced by prolonged biliary obstruction in the rat. Basic Clin. Pharmacol. Toxicol. 94, 99-104 (2004) https://doi.org/10.1111/j.1742-7843.2004.pto940207.x
  32. Niemela, O., Parkkila, S., Yla-Herttuala, S., Villanueva, J., Ruebner, B., and Halsted, C.H., Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in a micropig model of alcohol-induced liver disease. Hepatology 22, 1208-1214 (1995)
  33. Pastor, A., Collado, P.S., Almar, M., and Gonzalez-Gallego, J., Antioxidant enzyme status in biliary obstructed rats: effects of Nacetylcysteine. J. Hepatol. 27, 363-370 (1997) https://doi.org/10.1016/S0168-8278(97)80183-3
  34. Reitman, S. and Frankel, S.A., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56-63 (1957)
  35. Roeb, E., Purucker, E., Gartung, C., Geier, A., Jansen, B., Winograd, R., and Matern, S., Effect of glutathione depletion and hydrophilic bile acid on hepatic acute phase reaction in rats with extrahepatic cholestasis. Scand. J. Gastroenterol. 38, 878-885 (2003) https://doi.org/10.1080/00365520310003471
  36. Rojkind, M., Rojkind, M.H., and Cerdero-Hernández, J., In vivo collagen synthesis and deposition in fibrotic and regenerating rat livers. Coll. Relat. Res. 3, 335-347 (1983)
  37. Tietz, N.W., Burtis, C.A., Duncan, P., Ervin, K., Peetitclerc, C.J., Rinker, A.D., Shirey, C., and Zygowica, E.R., Reference method for measurement of alkaline phosphatase activity in human serum. Study group on alkaline phosphatase. Clin. Chem. 29, 751-761 (1983)
  38. Tsukamoto, H., Matsuoka, M., and French, S.W., Experimental models of hepatic fibrosis: a review. Sem. Liver Dis. 10, 56-65 (1990) https://doi.org/10.1055/s-2008-1040457