Folate Content of Fast Foods and Processed Foods

패스트푸드와 가공식품의 엽산 함량

  • Ji, Hyun-Jung (Department of Food and Nutrition, Chungbuk National University) ;
  • Kim, Seung-Ki (Department of Food and Nutrition, Chungbuk National University) ;
  • Yon, Mi-Yong (Department of Food and Nutrition, Chungbuk National University) ;
  • Hyun, Tai-Sun (Department of Food and Nutrition, Chungbuk National University)
  • 지현정 (충북대학교 식품영양학과) ;
  • 김승기 (충북대학교 식품영양학과) ;
  • 연미영 (충북대학교 식품영양학과) ;
  • 현태선 (충북대학교 식품영양학과)
  • Published : 2009.06.30

Abstract

A trienzyme extraction method (use of ${\alpha}$-amylase, protease and folate conjugase) for food folate assay has been used to release folate from the food matrix. In order to reduce the incubation time with three enzymes, folate values were compared between two incubation protocols; separate incubation (SI, incubated with ${\alpha}$-amylase and conjugase separately for 2 hours after protease treatment) and combined incubation (CI, incubated with ${\alpha}$-amylase and conjugase together for 2 hours after protease treatment) using 88 food items from 12 kinds of fast foods and processed foods. We found that folate values by CI were comparable to or higher than those by SI, indicating that CI might be a better extraction procedure to shorten the entire incubation time. We measured folate contents in 49 fast foods and 26 processed foods by microbiological assay after CI. Mean folate contents of one serving of various burgers ranged from 43.1 to 62.0 ${\mu}g$. One serving of French fries, pizza, sandwich and triangled kimbab contained a mean of 53.3, 28.4, 47.4, and 25.7 ${\mu}g$ of folate, respectively. Folate contents of non-alcoholic beverages were very low, ranging from 1.0 to 5.2 ${\mu}g$/100 g. Some of our values were comparable to the values in the folate database published in Korean Nutrition Society, however, some of the published values were 140 times higher than the measured values in this study. Folate values measured by the more recent modifications here can be used to update Korean folate database to accurately estimate dietary folate intake.

본 연구에서는 식품 중의 엽산을 추출하기 위한 trienzyme 방법을 개선하기 위하여 ${\alpha}$-amylase와 folate conjugase 를 동시에 처리하는 방법 (CI)과 기존의 방법대로 protease, ${\alpha}$-amylase, folate conjugase 세가지 효소를 각각 처리하는 방법 (SI)을 비교해 보았으며, 개선된 방법을 이용하여 패스트푸드와 가공식품에 들어있는 엽산 함량을 분석하였다. 1) 12종 88개 식품에 대하여 엽산을 추출하기 위한 기존의 방법 (SI)과 두가지 효소를 동시에 처리하는 CI 방법으로 엽산 함량을 비교한 결과 식품의 종류에 따라 두 방법간에 -6.5%에서 34.0%까지의 차이를 보였다. 식품의 종류별로 paired t-test를 한 결과 9종에서는 유의적 차이를 볼 수 없었으며, 3종에서는 CI 방법이 SI 방법에 비해 유의적으로 높은 것으로 나타났다. 이는 효소 처리시간이 단축됨으로 인해 엽산의 손실이 적었기 때문인 것으로 보이며, 따라서 실험시간을 절약할 수 있는 CI 방법을 활용하는 것이 바람직하겠다. 2) CI 방법으로 식품 중의 엽산을 추출하고 미생물학적 방법으로 엽산 함량을 분석한 결과 햄버거의 100 g당 평균 엽산 함량은 29.0 ${\mu}g$, 치즈버거 35.6 ${\mu}g$, 불고기버거 34.4 ${\mu}g$, 새우버거 33.5 ${\mu}g$, 치킨버거 29.3 ${\mu}g$, 휘시버거 31.7 ${\mu}g$이었다. 비스킷의 엽산 함량은 28.1 ${\mu}g$, 감자튀김은 49.1 ${\mu}g$이었고, 피자 29.7 ${\mu}g$, 샌드위치 31.6 ${\mu}g$, 삼각김밥 24.3 ${\mu}g$으로 나타났으며, 이 값을 1회 분량으로 환산하면 버거종류는 43.1${\sim}$62.0 ${\mu}g$, 감자튀김 53.3 ${\mu}g$, 피자 28.4 ${\mu}g$, 샌드위치 47.4 ${\mu}g$, 삼각김밥 25.7 ${\mu}g$이었다. 3) 가공식품 26종의 엽산함량을 측정한 결과 100 g 당 엽산 함량이 가장 높은 식품은 캔옥수수로 89.5 ${\mu}g$이었고 다음으로는 냉동만두가 80.8 ${\mu}g$이었다. 그 외의 가공식품으로 소시지는 19.6 ${\mu}g$, 비엔나소시지 11.7 ${\mu}g$, 햄 11.5 ${\mu}g$, 튀긴어묵 10.7 ${\mu}g$ 등으로 측정되어 가공식품의 엽산 함량은 대체로 낮은 수준이었으며, 음료의 엽산 함량은 100 g당 1.0${\sim}$5.2 ${\mu}g$으로 매우 낮았다. 4) 본 연구에서 분석한 패스트푸드와 가공식품, 소스, 음료 등 32종의 엽산 함량을 기존의 식품영양가표와 비교하였을 때 식품영양가표의 엽산값은 분석값과 비슷한 경우도 있었으나 0.04${\sim}$140배 까지 차이가 매우 큰 경우도 있었다. 본 연구에서 분석한 식품 중의 엽산 함량은 우리나라 사람들의 엽산 섭취량을 파악하고자 할 때 기초자료로 활용 될 수 있을 것이며, 어린이, 청소년, 젊은 성인층에서 섭취량이 점차 증가하고 있는 패스트푸드와 새롭게 개발되는 가공식품의 엽산 함량을 앞으로도 지속적으로 분석하여 이를 데이터베이스에 반영할 필요가 있다고 여겨진다.

Keywords

References

  1. Ball GFM. Vitamins. Their role in the human body. Oxford, UK: Blackwell Publishing; 2004
  2. Baugh CM, Krumdieck CL. Naturally occurring folates. Ann N Y Acad Sci 1971; 186: 7-28 https://doi.org/10.1111/j.1749-6632.1971.tb31123.x
  3. Tamura T. Determination of food folate. J Nutr Biochem 1998; 9(5): 285-293 https://doi.org/10.1016/S0955-2863(98)00013-8
  4. Cerna J, Kas J. New conception of folacin assay in starch or glycogen containing food samples. Nahrung 1983; 27(10): 957- 964 https://doi.org/10.1002/food.19830271013
  5. De Souza S, Eitenmiller R. Effects of different enzyme treatments on extraction of total folate from various foods prior to microbiological assay and radioassay. J Micronutr Anal 1990; 7: 37- 57
  6. Martin JI, Lenden WO, Soliman AGM, Eitenmiller RR. Application of a tri-enzyme extraction for total folate determination in foods. J Assoc Off Anal Chem 1990; 73(5): 805-808
  7. Hyun TH, Tamura T. Trienzyme extraction in combination with microbiologic assay in food folate analysis: An updated review. Exp Biol Med 2005; 230(7): 444-454
  8. Ruggeri S, Vahteristo LT, Aguzzi A, Finglas P, Carnovale E. Determination of folate vitaminers in food and in Italian reference diet by high-performance liquid chromatography. J Chromatogr A 1999; 855(1): 237-245 https://doi.org/10.1016/S0021-9673(99)00674-3
  9. Rader JI, Weaver CM, Angyal G. Total folate in enriched cerealgrain products in the United States following fortification. Food Chem 2000; 70(3): 275-289 https://doi.org/10.1016/S0308-8146(00)00116-3
  10. Whittaker P, Tufaro PR, Rader JI. Iron and folate in fortified cereals. J Am Coll Nutr 2001; 20(3): 247-254
  11. Ginting E, Arcot J. High-performance liquid chromatographic determination of naturally occurring folates during tempe preparation. J Agric Food Chem 2004; 52(26): 7752-7758 https://doi.org/10.1021/jf040198x
  12. Ndaw S, Bergaentzlé M, Aoudé-Werner D, Lahély S, Hasselmann C. Determination of folates in foods by high-performance liquid chromatography with fluorescence detection after precolumn conversion to 5 -methyltetrahydrofolates. J Chromatogr A 2001; 928(1): 77-90
  13. Konings EJM, Roomans HHS, Dorant E, Goldbohm RA, Saris WHM, van den Brandt PA. Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 2001; 73(4): 765-776
  14. Jin HO, Lim HS. Major foods for folate and their folate contents of Korean child-bearing women. J Korean Soc Food Sci Nutr 2001; 30(1): 152-158
  15. Yon M, Hyun TH. Folate content of foods commonly consumed in Korea measured after trienzyme extraction. Nutr Res 2003; 23(6): 735-746 https://doi.org/10.1016/S0271-5317(03)00069-1
  16. Han YH, Yon M, Hyun TH. Folate intake estimated with an updated database and its association to blood folate and homocysteine in Korean college students. Eur J Clin Nutr 2005; 59(2): 246-254 https://doi.org/10.1038/sj.ejcn.1602065
  17. The Korean Nutrition Society, Recommended Dietary Allowances for Koreans, 7th revision, Seoul; 2000
  18. National Rural Living Science Institute, Food Composition Table, 7th revision, Rural Development Administration; 2006
  19. Yon M, Hyun T. Additional data for folate database for foods common in Korea. Korean J Nutr 2005; 38(7): 586-604
  20. Hyun T, Han YH. Comparison of folate intake and food sources in college students using the 6th vs. 7th nutrient database. Korean J Nutr 2001; 34(7): 797-809
  21. Ministry of Health and Welfare, The Third Korea National Health & Nutrition Examination Survey (KNHANES III), 2005- Nutrition Survey (II); 2006
  22. Hyun T, Han YH, Lim EY. Blood folate level determined by microplate reader and folate intake measured by a weighed food record. Korean J Community Nutrition 1999; 4(4): 512-520
  23. Johnston KE, Lofgren PA, Tamura T. Folate concentrations of fast foods measured by trienzyme extraxtion method. Food Res Int 2002; 35(6): 565-569 https://doi.org/10.1016/S0963-9969(01)00157-0
  24. Food and Drug Administration. Food standards: amendment of standards of identify for enriched grain products to require addition of folic acid. Federal Regist 1996; 61(44): 8781-8797
  25. United States Department of Agriculture. Composition of foods, raw, processed, prepared. USDA National nutrient database for standard reference, Release 21, 2008. Available from: http://www.nal.usda.gov/fnic/foodcomp
  26. Williams WL, Broquist HP, Snell EE. Oleic acid and related compounds as growth factors for lactic acid bacteria. J Biol Chem 1947; 170(2): 619-630
  27. Partanen L, Marttinen N, Alatossava T. Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst Appl Microbiol 2001; 24(4): 500-506 https://doi.org/10.1078/0723-2020-00078
  28. Talon R, Walter D, Montel M. C. Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids. Meat Science 2000; 54(1): 41-47 https://doi.org/10.1016/S0309-1740(99)00068-6