DOI QR코드

DOI QR Code

제주 연안 퇴적층에서 분리된 미생물의 동정 및 단백질분해효소 특성

Identification of Microorganisms Isolated from Jeju Coastal Sedimentary Layer and Characterization of Their Proteases.

  • 김만철 (제주대학교 수산생명의학과) ;
  • 장태원 (제주대학교 수산생명의학과) ;
  • 김주상 (제주대학교 수산생명의학과) ;
  • 한용재 (제주대학교 수산생명의학과) ;
  • ;
  • 한송헌 (제주대학교 수산생명의학과) ;
  • 오덕철 (제주대학교 생명과학과) ;
  • 허문수 (제주대학교 수산생명의학과)
  • Kim, Man-Chul (Department of Aquatic Life Medicine, Jeju National University) ;
  • Jang, Tae-Won (Department of Aquatic Life Medicine, Jeju National University) ;
  • Kim, Ju-Sang (Department of Aquatic Life Medicine, Jeju National University) ;
  • Han, Yong-Jae (Department of Aquatic Life Medicine, Jeju National University) ;
  • Harikrishnan, Ramasamy (Department of Aquatic Life Medicine, Jeju National University) ;
  • Han, Song-Hun (Department of Aquatic Life Medicine, Jeju National University) ;
  • Oh, Duck-Chul (Department of Life Science, Jeju National University) ;
  • Heo, Moon-Soo (Department of Aquatic Life Medicine, Jeju National University)
  • 발행 : 2009.06.30

초록

제주도 양식장 배출수 퇴적층에서 단백질 분해 효소를 생산하는 세균을 분리하였으며, 각각 SK-2, 및 SK-125라고 명명하였다. 분리균주 SK-2의 16S rDNA의 염기서열 분석 결과 Baeillus lieheniformis와 Baeillus subtillis의 염기서열과 99%의 상동성을 보였으며, BIOLOG를 이용한 생화학적 분석에서도 Bacillus family와 유사한 특성을 보여 최종적으로 분리균주 SK-2를 Baeillus sp. SK-2으로 명명하였다. 또한 분리균주 SK-125의 16S rDNA의 염기서열 분석 결과 Pseudoal teromonas haloplanktis의 염기서열과 99% 의 상동성을 보였으며, BIOLOG를 이용한 생화학적 분석에서도 Pseudoalteromonas family와 유사한 특성을 보여 최종적으로 분리균주 SK-125를 Pseudoalteromonas sp. SK-125라고 명명하였다. Baeillus sp. SK-2와 Pseudoalteromonas sp. SK-125균주의 온도별 실험에서는 $40^{\circ}C$에서 가장 높은 생육도를 보였으며, 효소활성은 Bacillus sp. SK-2와 Pseudoalteromonas sp. SK-125 두 균주 모두 $30^{\circ}C$에서 가장 높은 활성을 보였다.

In this study, protease-producing bacteria were isolated from the marine sedimentary layer in coastal Jeju. We isolated 2 protease producing strains (SK-2 and SK-125) and tested their protesase producing activities. Gram staining and BIOLOG of isolated strains revealed that strains SK-2 and SK-125 belong to Bacillus and Pseudoalteromonas families, respectively. The 16S rDNA nucleotide sequences analyses of the isolated strains showed 99% sequence homology with those of Bacillus sp. and Pseudoalteromonas sp.; therefore, the isolated strains SK-2 and SK-125 were named Bacillus sp. SK-2 and Pseudoalteromonas sp. SK-125, respectively. The optimum conditions for the cell growth of protease activities were obtained when the both isolates were cultured at $30^{\circ}C$, 96 hrs and pH $7{\sim}8$.

키워드

참고문헌

  1. Ackefors, H. and M. Enell. 1990. Discharge of nutrients from Swedish fish farming to adjacent sea areas. Ambio. 19, 28-35
  2. Chun, D. S., D. K. Kang, and H. G. Kim. 2002. Isolation and enzyme production of neutral protease-producing strain, Bacillus sp. DS-1. Kor. J. Microbiol. Biotechnol. 30, 346-351
  3. Exterkate, F. A. 1984. Location of peptidase outside and inside the membrane of Streptococcus cremoris. Appl. Environ. Microbiol. 47, 177-183
  4. Godfrey, T. and S. West. 1996. Industrial enzymology. 2nd ed. Macmillan Publishers Inc. NY. USA
  5. Kim, D. S., H. R. Kim, T. J. Nam, and J. P. Pyeun. 1999. Medium composition of Asperzillus oryzae PF for the production of proteolytic enzyme. Kor. J. Appl. Microbiol. Biotechnol. 27, 404-409
  6. Kumar, S., K. Tamura, and M. Nei. 2004. Mega 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5, 150-163 https://doi.org/10.1186/1471-2105-5-150
  7. Lee, Y. D., C. Y. Kim, and M. P. Kang. 2002. A study on the water quality characteristics of aquacultural effluents by Electrolysis. Journal of Korea Technological Society of Water and Waste Water Treatment 10, 41-49
  8. Lee, Y. J., Y. C. Jae, H. J. Lee, H. C. Chang, J. H. Kim, D. K. Chung, Y. S. Kim, S. K. Cho, and D. H. Lee. 2002. Identification of Cellenvelope Proteinase of Lactic Acid Bacteria Isolated from Kimchi. Kor. J. Microbiol. Biotechnol. 20, 116-112
  9. Lowry, O. H., N. J. Rosebrough, L. A. Farr, and R. J. Randal. 1951. Protein measurement with folinphenol reagent. J. Biol. Chem. 193, 265-275
  10. Min, O. K., M. S. Kim, W. S. Seo, J. Y. Cha, and Y. S. Cho. 2000 Characterization of extracellular protease of Bacillus sp. WRD-1. Kor. J. Appl. Microbiol. Biotechnol. 28, 329-333
  11. Moon, S. W., J. B Lee, Y. D. Lee, S. J. Kim, B. J. Kang, and Y. B. Go. 2002. Recycling marine fish farm effluent by microorganisms. J. Aquaculture. 15, 261-266
  12. Murakami, K., Y. Hosokawa, and S. Talano. 1998. Monitoring on bottom sediment quality improvement by sand capping in Mikawa bay. Bull. Coastal Oceanogr. 36, 83-89
  13. Namwong, S., K. Hiraga, K. Takara, M. Tsunemi, S. Tanasupawat, and K. A. Oda. 2006. Halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization. Biosci. Biotechnol. Biochem. 70, 1395-1401 https://doi.org/10.1271/bbb.50658
  14. Noble, L. D. and J. A. Gow. 1998. The effect of suspending solution supplemented with marine cations on the oxidation of Biolog GNMicroPlate substrates by Vibrionaceae bacteria. Can. J. Microbiol. 44, 251.258 https://doi.org/10.1139/cjm-44-3-251
  15. Novo Industry A/S. 1990. Anson hemoglobin method for determination of bacterial proteinase activity. AF 4.2/5, Novo Industry A/S, Bagsvaerd, Denmark
  16. Pritchard, G. G. and T. Coolbear. 1993. The Physiology and Biochemistry from Proteolytic System in Lactic Acid Bacteria. FEMS Microbiol. Rev. 12, 179-206 https://doi.org/10.1111/j.1574-6976.1993.tb00018.x
  17. Smid, E. J., B. Poolmman, and W. N. Konings. 1995. Casein Utilization by lactococci. Appl. Environ. Microbiol. 57, 2477-2452
  18. Takeuchi, T. 1999. Possibility of water quality improvement works for environmental conservation in water areas. Bull. Coastal Oceanogr. 36, 131-135
  19. Tan, P. S. T., B. Poolman, and W. N. Konings. 1993. Proteolytic Enzyme of Lactococcus lactis. J. Dairy Res. 60, 269-286 https://doi.org/10.1017/S0022029900027606