DOI QR코드

DOI QR Code

The Anticancer Effect and Mechanism of Photodynamic Therapy Using 9-Hydroxypheophorbide-a and 660 nm Diode Laser on Human Squamous Carcinoma Cell Line.

9-hydroxypheophorbide-a와 660 nm 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구

  • Ahn, Jin-Chul (Medical Laser and Device Research Center, Dankook University)
  • 안진철 (단국대학교 의학레이저 의료기기 연구센터)
  • Published : 2009.06.30

Abstract

A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a), was derived from Spirulina platensis. We conducted a series of experiments, in vitro and in vivo, to evaluate the anticancer effect and mechanism of photodynamic therapy using 9-HpbD-a and 660 nm diode lasers on a squamous carcinoma cell line. We studied the cytotoxic effects of pheophytin-a, 9-HpbD-a, 9-HpbD-a red and 660 nm diode lasers in a human head and neck cancer cell line (SNU-1041). Cell growth inhibition was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The effects of 9-HpbD was higher than those of 9-HpbD-a red or pheophytin-a in PDT. We then tested the cytotoxic effects of 9-hydroxypheophorbide-a (9-HpbD-a) in vitro. The cultured SNU-I041 cells were treated with serial concentrations of 9-HpbD-a followed by various energy doses (0, 0.1, 0.5, 3.2 J/$cm^{2}$) and by various interval times (0, 3, 6, 9, 12 hr) until laser irradiation, then MTT assay was applied to measure the relative inhibitory effects of photodynamic therapy (PDT). Optimal laser irradiation time was 30 minutes and the cytotoxic effects according to incubation time after 9-HpbD-a treatment increased until 6 hours, after which it then showed no increase. To observe the cell death mechanism after PDT, SUN-I041 cells were stained by Hoechst 33342 and propidium iodide after PDT, and observed under transmission electron microscopy (TEM). The principal mechanism of PDT at a low dose of 9-HpbD-a was apoptosis, and at a high dose of 9-HpbD-a it was necrosis. PDT effects were also observed in a xenografted nude mouse model. Group I (no 9-HpbD-a, no laser irradiation) and Group II (9-HpbD-a injection only) showed no response (4/4, 100%), and Group III (laser irradiation only) showed recurrence (1/4,25%) or no response (3/4, 75 %). Group IV (9-HpbD-a + laser irradiation) showed complete response (10/16, 62.5%), recurrence (4/16, 25%) or no response (2/16, 12.5%). Group IV showed a significant remission rate compared to other groups (p<0.05). These results suggest that 9-HpbD-a is a promising photosensitizer for the future and that further studies on biodistribution, toxicity and mechanism of action would be needed to use 9-HpbD-a as a photosensitizer in the clinical setting.

녹조류인 Spirulina platensis에서 추출하여 만든 새로운 광감작제와 660 nm의 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전을 알아보았다. 세포 독성능은 MTT assay를 이용하였고, 세포사멸기전은 propidium iodide과 Hoechst 33342 염색법과 투과전자현미경으로 확인하였다. 또한 암세포가 이종 이식된 누드마우스 모델에서 광역학치료를 시행하여 항암효과를 확인하였다. 3종류의 클로로필 유도체 중 9-hydroxypheophorbide-a (9-HpbD-a)의 세포 독성능이 가장 우수하였고, 9-HpbD-a의 적정 레이저조사 시간은 30분 (3.2 J/$cm^{2}$), 광감작제를 투여하고 레이저조사시간까지의 배양시간은 최소 6시간 이상임을 확인하였다. 광역학치료의 세포사멸기전은 낮은 9-HpbD-a 농도에서 세포고사가 주된 세포사멸기전이었고, 높은 농도의 9-HpbD-a에서는 세포괴사에 의한 세포사멸이 주된 기전임을 확인하였다. 투과전자현미경 하에서도 같은 양상을 관찰하였다. 그리고 암세포가 이종 이식된 누드마우스 모델에서의 광역학치료는 제1군 정상대조군과 제2군 9-HpbD-a만을 투여한 종양조직모두 지속적인 종양의 성장(100% )을 보였고, 제3군인 레이저만을 종양조직에 조사한 실험군에서는 3 마리는 치료가 되지 않았고(75.0%), 1 마리는 재발(25.0%) 하였다. 제4군 광역학치료군에서 총16 마리의 종양에서 10 마리는 완치(62.5%), 4 마리는 재발(25.0%), 2 마리는 치유되지 않았음(12.5% )을 확인하였다. 9-HpbD-a와 660 nm 다이오드 레이저를 이용한 광역학치료는 유의한 항암효과를 나타내었고 9-HpbD-a를 이용한 광역학치료는 새로운 치료방법으로서 향후 암치료의 유용한 치료방법으로 기대된다.

Keywords

References

  1. Berg, K., J. C. Bommer, and J. Moan. 1989. Evaluation of sulphonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies. Cancer Lett. 44, 7-15 https://doi.org/10.1016/0304-3835(89)90101-8
  2. Berg, K. and J. Moan. 1997. Lysosomes and microtubles as targets for photochemotherapy of cancer. Photochem. Photobiol. 65, 403-409 https://doi.org/10.1111/j.1751-1097.1997.tb08578.x
  3. Carl, D. 2000. Update on photodynamic therapy. Curr. Opin. Opthalmol. 11, 166-170 https://doi.org/10.1097/00055735-200006000-00002
  4. Crissman, M. J. 1995. Cell cycle analysis by flow cytometry. Cell Growth and apoptosis, 2nd edition. Studzinski, G. P.(ed.). 21-43. IRL press: Oxford
  5. Dahle, J., H. B. Steenand, and J. Moan. 1999. The mode of cell death induced by photodynamic treatment depends on cell density. photochemistry and photobiology. 70, 363-367 https://doi.org/10.1111/j.1751-1097.1999.tb08150.x
  6. Dougherty, T., J. Kaufman, A. Goldfarb, K. Weishaupt and D. Boyle. 1978. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 143-151
  7. Fingar, V. H., T. J. Wieman, and K. W. Doak. 1990. The role of thromboxane and prostacyclin release on photodynamic therapy induced tumor destruction. Cancer Res. 50, 2599-2603
  8. Foote, C. S. 1987. Type I and Type II mechanisms of photodynamic action, In Heitz, J. R. and K. R Downum (eds.), Light-Activates Pesticides, American Chemical Society, Washington DC. 22-38
  9. Fujishima, I., T. Sakai, T. Tanaka, H. Ryu, K. Uemura, Y. Fujishima, K. Horiuchi, N. Daikuzono, Y. Sekiguchi. 1991. Photodynamic therapy using pheophorbide a and Nd:YAG laser. Neurol. Med. Chir. 31, 257-263 https://doi.org/10.2176/nmc.31.257
  10. Furukawa, K., H. Yamamoto, D. H. Crean, H. Kato, T. S. Man. 1996. Localization and treatment of transformed tissues using the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a. Lasers Surg. Med. 18, 157-166 https://doi.org/10.1002/(SICI)1096-9101(1996)18:2<157::AID-LSM5>3.0.CO;2-R
  11. Gibson, S. L., T. L. Checkler, and T. G. Bryant. 1989. Effects of laser photodynamic therapy on tumor phosphate levels and pH assessed by p-NMR spectroscopy. Cancer Biochem. Biophys. 10, 319-328
  12. Gomer, C. J., A. Rucker, and A. Ferrario. 1989. Properties and applications of photodynamic therapy. Radiat. Res. 120, 1-8 https://doi.org/10.2307/3577632
  13. Hampton, J. A., and S. H. Selman. 1992. Mechanism of cell killing in photodynamic therapy using a novel in vivo drug/in vitro light culture system. Photochem. Photobiol. 56, 235-243 https://doi.org/10.1111/j.1751-1097.1992.tb02152.x
  14. Henderson, B. W., and G. Farrell. 1989. Possible implications of vascular damage for tumor cell inactivation in vivo: vomparison of different photosensitizers. SPIE Cofn. Proc. 1065, 2-10 https://doi.org/10.1117/12.977998
  15. Hetzell, F. W. and M. Chopp. 1989. Modifications in intratumor microenvironment with PDT. SPIE Conf. Proc. 1065, 41-7 https://doi.org/10.1117/12.978002
  16. Jin, H., M. F. Horng, T. Deahl, N. L. Oleinick, and H. H. Evans. 1998. Variation in photodynamic efficacy during the cellular uptake of two phthalocyanine photosensitizers. Photochem. Photobiol. 67, 720-728 https://doi.org/10.1111/j.1751-1097.1998.tb09477.x
  17. Jori, G., E. R. Beltramini, B. Salvato, L. Z. Pagnan, and T. Sanov. 1984. Evidence for a major role of plasma lipoproteins a hematoporphyrin carriers in vivo. Cancer Lett. 24, 291-297 https://doi.org/10.1016/0304-3835(84)90025-9
  18. Kato, H. 1996. History of photodynamic therapy-past, present and future. Gan To Kagaku Ryoho. 23, 8-15
  19. Kessel, D., P. Thompson, K. Saaito, and K. D. Nanturri. 1987. Tumor localization and photosensitization by sulfonated derivatives of tetraphenylporphine. Photochem. Photobiol. 45, 787-790 https://doi.org/10.1111/j.1751-1097.1987.tb07883.x
  20. Lee, W. Y., J. H. Park, B. S. Kim, M. J. Han, B. S. Hahn. 1990. Chlorophyll derivatives (CpD) extracted from silk worm excreta are specifically cytotoxic to tumor cells in vitro. Yonsei Med. J. 31, 225-233 https://doi.org/10.3349/ymj.1990.31.3.225
  21. Lim, H. W. 1989. Role mediators of inflammationand cells in porphyrin induced phototoxicity. SPIE Conf. Proc. 1065, 28-33 https://doi.org/10.1117/12.978000
  22. McCabe, M., P. Nicotera, and S. Orrenius. 1992. Calcium dependent cell death: role of the endonuclease, protein kinase C and chromatin formation. Ann. NY Acad. Sci. 663, 269-278 https://doi.org/10.1111/j.1749-6632.1992.tb38670.x
  23. McCaughan, L. 1990. Lasers in photodynamic therapy. Nurs. Clin. North Am. 25, 725-738
  24. Milanesi, C., C. Zhou, R. Biolo, and G. Jori. 1990. Zn(II)-phthaocyanine as photodynamic agent for tumors. Studies on the mechanism of photosensitized tumor necrosis. Br. J. Cancer. 61, 846-850 https://doi.org/10.1038/bjc.1990.189
  25. Moan, J., and K. Berg. 1991. The photodegradation of porphrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549-553 https://doi.org/10.1111/j.1751-1097.1991.tb03669.x
  26. Moor, A. 2000. Signaling pathway in celll death and survival after photodynamic therapy. Photochem. Photobiol. 57, 1-13 https://doi.org/10.1016/S1011-1344(00)00065-8
  27. Muller, S., H. Walt, U. Hallr, and D. Fiedler. 1998. Enhanced photodynamic effects using fractinrated laser light. Photochem. Photobiol. 42, 67-70 https://doi.org/10.1016/S1011-1344(97)00124-3
  28. Newsholme, E. A., and A. R. Leech. 1984. Biochemistry for the medical sciences. Wiley. New York
  29. Noodl, B., T. Berg, O. Sttoke, J. Peng, and J. Nesland. 1996. Apoptosis and necrosis induced with light and 5-ALA derived protoporphyrin IX. Br. J. Cancer. 74, 22-29 https://doi.org/10.1038/bjc.1996.310
  30. Ochsner, M. 1997. New trends in photobiology (Invited review) Photophysical and photobiological processes in the photodynamic therapy of tumors. Photochem Photobiol. 39, 1-18 https://doi.org/10.1111/j.1751-1097.1984.tb03395.x
  31. Rosenthal, I. 1991. Phthalocyanines as photodynamic sensitizers. Photochem. Photobiol. 53, 859-870 https://doi.org/10.1111/j.1751-1097.1991.tb09900.x
  32. Scudiero, D. A., R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, and M. R. Boyd. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833 https://doi.org/10.1385/1-59259-071-3:175
  33. Specht, K. G., and M. A. Rodgers. 1990. Depolarization of mouse myeloma cell membranes during photodynamic action. Photochem. Photobiol. 51, 319-324 https://doi.org/10.1111/j.1751-1097.1990.tb01717.x
  34. Tomio, L., G. Redi, P. L. Jori, and G. B. Zorat. 1980. Hematoporphyrin as a sensitizer in tumor phototherapy: effect of medium polarity on the photosensitizing efficiency and role of the administration pathway on the distribution in normal and tumor bearing rats, In Pratesi, R. and C. A. Sacchi (eds.), Lasers in photomedicine and photobiology, Springer-Verlag, Berlin. 76-82
  35. Wyld, L., M. W. R. Reed, and N. J. Brown. 2001. Differential cell death response to photodynamic therapy is dependent on dose and cell type. Bri. J. Cancer. 84, 1384-1386 https://doi.org/10.1054/bjoc.2001.1795
  36. Xiao-Yan, H., A. S. Robert, S. Thomsen, W. K. Leland, and S. L. Jacques. 1994. Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell line. Photochem. Photobiol. 59, 468-473 https://doi.org/10.1111/j.1751-1097.1994.tb05066.x
  37. Zhou, C. 1989. Mechanism of tumor necrosis induced by photodynamic therapy. Photochem. Photobiol. 3, 299-318 https://doi.org/10.1016/1011-1344(89)80035-1