DOI QR코드

DOI QR Code

Bacillus sp. PS-12가 생산하는 extracellular polysaccharide의 분리 및 immunomodulating activity

Isolation and Immunomodulating Activity of an Extracellular Polysaccharide Produced by Bacillus sp. PS-12

  • 나예슬 (가톨릭대학교 생명공학과) ;
  • 서현효 (국립진주산업대학교 환경공학과)
  • Na, Ye-Seul (Department. of Biotechnology and Biomaterial Engineering Research Center, Catholic University) ;
  • Suh, Hyun-Hyo (Department. of Environmental Engineering, Jiinju National University)
  • 발행 : 2009.06.30

초록

토양에서 분리한 세포외 다당류 생산균주 PS-12는 형태학적, 생리학적, 화학적 분석에 의하여 Bacillus sp.에 속하는 균주로 동정되었으며, 분리균주 PS-12는 Bacillus sp. PS-12로 명명하였다. Bacillus sp. PS-127가 생산하는 세포외 다당류는 에탄올 침전, cetylpyridinium chloride (CPC) 침전과 gel permeation chromatography를 이용하여 정제하였으며, 정제된 다당류 PS-12의 당조성은 glucose, mannose, galactose와 fucose가 7:3.2:2:1의 몰비로 구성되어있었다. Bacillus sp. PS-12로부터 분리된 다당류 PS-12를 이용하여 면역증강효과를 확인하였다. TNF-${\alpha}$ 및 lL-6 측정은 RAW264.7 대식세포주를 사용하였으며 cytokine 정량을 위하여 ELISA kit를 이용하였다. RAW264.7 세포주에 대한 PS-12의 세포독성을 확인하기 위하여 세포독성이 10% 미만을 나타내는 농도인 2 ${\mu}g$/ml을 PS-12의 최대농도로 측정하였다. PS-12는 ${\mu}g$/ml에서 TNF-${\alpha}$를 정상세포보다 50배 이상 높은 수치로 생산하였다. 또한 lL-6의 생산을 농도 의존적으로 증가시켰다. 이러한 결과로부터 PS-127가 면역세포에 대해 세포독성을 거의 나타내지 않는 농도에서 대식세포로부터 TNF-${\alpha}$와 11-6의 cytokine 생산을 함으로써 면역증강효과를 나타낸다는 것을 확인하였다.

A bacterial strain producing highly viscous extracellular polysaccharide was isolated from soil. Through morphological, physiological and chemotaxonomical studies, it was identified as a Bacillus sp. and named Bacillus sp. PS-12. The extracellular polysaccharide, named PS-12 was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation and gel permeation chromatography. The purified polysaccharide was found to consist of glucose, mannose, galactose, and fucose, with a molar ratio of approximately 7:3.2:2:1, respectively. PS-12 was investigated for its immunostimulating activity on murine macrophage RAW264.7 cells using an ELISA assay. PS-12 stimulated the production of TNF-${\alpha}$ to a level 50 times greater than the control and also induced 1L-6 secretion in a dose-dependent manner. The cytotoxicity on RAW264.7 cells by PS-12 was relatively low with 10% cytotoxicity at 2 ${\mu}g$/ml. These results indicate that PS-12 is less cytotoxic to immune cells and possess immunomodulating activity in which it can produce cytokines including TNF-${\alpha}$ and 1L-6 from macrophages.

키워드

참고문헌

  1. Ahn, S. G., H. H. Suh, C. H. Lee, H. M. Oh, G. S. Kwon, D. H. Yi, and B. D. Yoon. 1994. Production and rheological properties of the polysaccharide from Bacillus sp. A29. Kor. J. Appl. Microbial. Biotechnol. 22, 175-181
  2. Akira, S., T. Taga, and T. Kishimoto. 1993. Interleukin-6 in biology and medicine. Adv. Immunol. 54, 1-78 https://doi.org/10.1016/S0065-2776(08)60532-5
  3. Ashtaputre, A. A. and A. K. Shah. 1995. Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1. Appl. Environ. Microbiol. 61, 1159-1162 https://doi.org/10.1016/S0960-8524(02)00066-4
  4. Bauer, J. and F. Herrmann. 1991. Interleukin-6 in clinical medicine. Ann. Hematol. 62, 203-210 https://doi.org/10.1007/BF01729833
  5. Becker, A., F. Katzen, A. Puhler, and L. Lelpi. 1998. Xanthan gum biosynthesis and application: A biochemical/genetic prospective. Appl. Microbial. Biotechnol. 50, 145-152 https://doi.org/10.1007/s002530051269
  6. Browder, W., D. Williams, H. Pretus, G. Olivero, F. Enrichens, and P. Mao. 1990. Beneficial effect of enhanced macrophage function in trauma patient. Ann. Surg. 211, 605-613
  7. Chaplin, M. F. and J. F. Kennedy. 1986. Phenol-sulphuric acid assay, pp. 2, In Chaplin, M. F. and J. F. Kennedy (eds.), Carbohydrate Analysis; A Practical Approach. IRL press, Washington, DC
  8. Choy, Y. M., S. F. Tsang, S. K. Kong, K. N. Leung, H. Parolis, C. Y. Lee, and K. P. Fung. 1996. K1 and K3 capsular antigens of Klebsiella induce tumor necrosis factor activities. Life Sciences 58, 153-158
  9. Crescenzi, V. 1995. Microbial polysaccharides of applied interest: On going research activities in Europe. Biotechnol. Prog. 11, 251-259 https://doi.org/10.1021/bp00033a002
  10. Damais, C., C. Bona, L. Chedid, J. Fleck, C. Nauciel, and J. P. Martin. 1975. Mitogenic effect of bacterial peptidoglycans possessing adjuvant activity. J. Immunol. 115, 268-271
  11. Dziarski, R. 1980. Polyclonal activation of immunoglobulin secretion in B lymphocytes induced by staphylococcal peptidoglycan. J. Immunol. 125, 2478-2483
  12. Dziarski, R. 1986. Effects of peptidoglycan on the cellular components of the immune system, pp. 229-247. In Seidl, P. H. and K. H. Schleifer (eds.), Biological properties of peptidoglycan. Walter de Gruyter, Berlin, Germany
  13. Fan, H., D. L. Williams, B. Zingarelli, K. F. Breuel, G. Teti, G. E. Tempel, K. Spicher, G. Boulay, L. Birnbaumer, P. V. Halushka, and J. A. Cook. 2006. Differential regulation of lipopolysaccharide and Gram-positive bacteria induced cytokine and chemokine production in splenocytes by Galphai proteins. Biochim. Biophys. Acta. 1763, 1051-1058 https://doi.org/10.1016/j.bbamcr.2006.08.003
  14. Goerdt, S., O. Politz, K. Schledzewski, R. Birk, A. Gratchev, P. Guillot, N. Hakiy, C. D. Klemke, E. Dippel, V. Kodelja, and C. E. Orfanos. 1999. Alternative versus classical activation of macrophages. Pathobiology 67, 222-226 https://doi.org/10.1159/000028096
  15. Gorden, R. E., W. C. Heynes, and C. H. Pang. 1975. The genus Bacillus, Agriculture handbook stock number 202-275-2091, United States Department of Agriculture, Washington, D.C
  16. Guenounou, M., A. F. Goguel, and C. Nauciel. 1982. Study of adjuvant and mitogenic activities of bacterial peptidoglycans with different structures. Ann. Immunol. 133, 3-13
  17. Gupta, D., T. N. Kirkland, S. Viriyakosol, and R. Dziarski. 1996. CD14 is a cell-activating receptor for bacterial peptidoglycan. J. Biol. Chem. 271, 23310-23316 https://doi.org/10.1074/jbc.271.38.23310
  18. Hampton, R. Y., D. T. Golenbock, M. Penman, M. Krieger, and R. H. Raetz. 1991. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 352, 342-344 https://doi.org/10.1038/352342a0
  19. Hamuro, J. and G. Chihara. 1984. Lentinan, a T-cell oriented immunopotentiator, pp. 409-436, In Fenichel, R. L. (ed.), Modulation Agents and their Mechanisms. Marcel Dekker, Inc. New York and Basel
  20. Heumann, D., C. Barras, A. Severin, M. P. Glauser, and A. Tomasz. 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62, 2715-2721
  21. Kitchens, R. L., and R. S. Munford. 1995. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J. Biol. Chem. 270, 9904-9910 https://doi.org/10.1074/jbc.270.17.9904
  22. Komagata, K. and K. I. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics, pp. 161-207, In Colwell, R. R. and R. Grigorova (eds.). Methods in microbiology, Vol. 19, Academic Press, London
  23. Lawson, C. J. and I. W. Shurtland. 1978. Polysaccharides, pp. 327-397, In http://v.daum.net/info/3338015? nil_no=37636&t__nil_bloggernews=txt&nil_id=12 Rose, A. H. (ed), Economic Microbiology, vol. 2, Academic Press, New York, U.S.A
  24. Le Page, C., P. Genin, M. G. Baines, and J. Hiscoyy. 2000. Interferon activation and innate immunity. Rev. Immunogenet. 2, 374-386
  25. MacMicking, J., Q. W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350 https://doi.org/10.1146/annurev.immunol.15.1.323
  26. Miller, L. 1982. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acid. J. Clin. Microbiol. 16, 584-586
  27. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  28. Peter, H. A. S., S. M. Nicholas, M. E. Sharpe, and J. F. Holt. 1986. Bergey's manual of systematic bacteriology, Vol. 2, pp. 1104-1139, Williams and Wikins Co., Baltimore
  29. Rehm, B. H. A. and S. Valla. 1997. Bacterial alginates: Biosynthesis and application. Appl. Microbiol. Biotechnol. 48, 281-288 https://doi.org/10.1007/s002530051051
  30. Suzuki, K. and K. Komagata. 1983. Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol. 33, 188-200 https://doi.org/10.1099/00207713-33-2-188
  31. Tait, M. I., I. W. Sutherland, and A. Clarke-Sturman. 1986. Effect of growth conditions on the production, composition and viscosity of Xanthomonas campertris Exopolysaccharide. J. Gen. Microbiol. 132, 1483-1491
  32. Tamaoka, K. and K. Komagata. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125-128 https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  33. Ulevitch, R. J. 1993. Recognition of bacterial endotoxins by receptor dependent mechanisms. Adv. Immunol. 53, 267-289 https://doi.org/10.1016/S0065-2776(08)60502-7
  34. Williams, D. L., A. Mueller, and W. Browder. 1996. Glucan-based macrophage stimulators. A review of their anti-infective potential. Clin. Immunother. 5, 392-399 https://doi.org/10.1016/S1567-5769(02)00015-2