DOI QR코드

DOI QR Code

A Study on Factors of Management of Diabetes Mellitus using Data Mining

데이터 마이닝을 이용한 당뇨환자의 관리요인에 관한 연구

  • Kim, Yoo-Mi (Korea Health Industry Development Institute) ;
  • Chang, Dong-Min (Dept. of Health Policy & Management, Inje University) ;
  • Kim, Sung-Soo (Dept. of Medical Record and Informatics, Asan Medical Center) ;
  • Park, Il-Su (National Health Insurance Corporation) ;
  • Kang, Sung-Hong (Dept. of Health Policy & Management, Inje University)
  • Published : 2009.05.31

Abstract

The Objectives: The purpose of this study is to identify the factors related to management of DM in Korea. Methods: The subjects selected by using data of National Health and Nutrition Survey(NHANS) in 2005 were 415 adults, aged 20 and older, and diagnosed with DM. This study used data mining algorithms. This study validated the predictive power of data mining algorithms by comparing the performance of logistic regression, decision tree, and Neural Network on the basic of validation, it was found that the model performance of decision tree was the best among the above three techniques. Result: First, awareness of DM was positively associated with age, residential area, and job. The most important factor of DM awareness is age. Awareness rate of DM with 52 age over is 76.1%. Among the ${\geq}52$ age group, an important factor is family history. Among patients who are 52 years or over with family history of DM, an important factor is job. The awareness rate of patients who are 52 age over, family, history of DM, and professionals is 95.0%. Second, treatment of DM was also positively associated with awareness, region, and job. The most important factor of DM treatment is DM awareness. Treatment rate of patients who are aware of DM is 84.8%. Among patients who have awareness of DM, an important factor is region. The awareness rate of patients who are aware of DM in rural area is 10.4%. Conclusion: Finally, the result of analysis suggest that DM management programs should consider group characteristic of DM patients.

본 연구의 목적은 당뇨환자 관리와 관련된 요인을 규명하는데 있다. 2005년 국민건강 영양조사에 참여한 20세 이상의 성인 당뇨환자를 대상으로 하였다. 데이터마이닝 기법을 이용하여 로지스틱 회귀모형, 의사결정나무, 신경망 모형으로 당뇨환자관리모형을 개발한 결과 의사결정나무가 가장 설명력이 뛰어났다. 당뇨인지율과 관련된 요인으로는 연령, 거주지 및 직업이었고 중 연령이 가장 중요한 요인으로 나타났다. 당뇨치료율과 관련된 요인으로는 당뇨인지여부, 거주지 및 직업이었고 그 중 당뇨인지여부가 가장 중요한 변수로 나타났다. 당뇨환자의 관리프로그램은 당뇨환자의 특성별 군집으로 분류하고 그에 따라 관리해야 한다.

Keywords

References

  1. 질병관리본부. 국민건강영양조사 제3기 조사결과심층분석 연구 보고서: 검진부문. 질병관리본부, 2007
  2. 통계청. 사망원인통계연보(2005). 통계청, 2006.
  3. Chodosh J, Morton SC, Mojica W, Maglione M, Suttorp MJ, Hilton L, Rhodes S, Shekelle P: Meta-analysis: Chronic disease self-management programs for older adults. Ann Intern Med 2005;143:427-38. https://doi.org/10.1001/archinte.143.3.427
  4. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin- dependent diabetes mellitus. N Engl J Med 1993; 329:977-86. https://doi.org/10.1056/NEJM199309303291401
  5. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53. https://doi.org/10.1016/S0140-6736(98)07019-6
  6. Vijan S, Stevens DI, Herman WH, Funnel MN, Stanford CJ: Screeing, preventing, counseling, and treatment for the complications of type II diabetes mellitus: putting evidence into practice. J Gen Intern Med 1997; 12:567-80. https://doi.org/10.1046/j.1525-1497.1997.07111.x
  7. 박일수 외 4명. 데이터마이팅 기법을 활용한 맞춤형 고협압 사후관리 모형 개발. 응용통계연구, 2008; 21(4)
  8. 최종후, 서두성. 데이터마이닝 의사결정나무의 응용. 통계분석연구 1999;4(1):61-83.
  9. 전진수, 신강현, 김완석, 권정혜. 당뇨스트레스가 우울에 미치는 영향:개인차 변수들의 조절효과. 한국심리학회지 : 건강 2007:12(4):851-868.
  10. 박봉숙 외 7명. 청장년 당뇨병환자의 자기관리와 삶의 질. 당뇨병 2005;29:254-261.
  11. 송민선 외 10명. 체계적인 당뇨병 교육이 당화혈색소가 높은 제2형 당뇨병환자에게 미치는 장기효과:4년간 추적조사 연구. 당뇨병 2005;29:140-150.
  12. 장경순, 이관, 임현술. 일개 의원에서 당뇨병 교육을 통한 혈당조절과 건강상태. 당뇨병 2006;30:73-81.
  13. Desai J et al. Public health surveillance of diabetes in United States. Journal of Public Health Management and Practice 2003;Suppl:S44-51.
  14. Ibrahim MA, Saviz LA, Carey TS, Wagner EH. Population-based health principles in medical and public health practice. Journal of Public Health Management and Practice 2001;7:75-81.
  15. 이지혜. 20년 뒤엔 국민 10%가 당뇨환자 조선일보 2007년 11월 9일.
  16. 질병관리본부 국립보건연구원 유전체 연구부. 한국인 유전체 역학 조사 사업 기초성과보고서 2004 제1기 지역사회 코호트 연구(안성안산). 서울:질병관리본부, 2004.
  17. 조남한. 우리나라 당뇨병의 유병률과 관리 상태. 대한내과학회지 2005;68(1):10-17.
  18. Hogan P, Dall T, Nikolov P. Economic Costs of Diabetes in the U.S. in 2002, Diabetes Care 2003;26:917-932. https://doi.org/10.2337/diacare.26.3.917
  19. McCall, D. T., J. E. Reusch, A. Sauaia, P. Barton, and R. F. Hamman. "Are low-income elderly patients at risk for poor diabetes care?" Diabetes Care 2004;27:1060-1065. https://doi.org/10.2337/diacare.27.5.1060
  20. 최정수. 고혈압.당뇨관리와 흡연 및 음주형태의 관련성 분석연구. 보건사회연구 2007;27(1):103-130.
  21. Ko GT, Chan JC, Yeung VT, Chow CC, Tsang LW, Cockram CS: A low socio-economic status is an additional risk factor for glucose intolerance in high risk Hong Kong Chinese, Eur J of Epidemiology 2001;17:289-95. https://doi.org/10.1023/A:1017935707807
  22. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B: Impaired fasting glucose and impaired glucose tolerance : implications for care, Diabetes care 2007;30:753-9. https://doi.org/10.2337/dc07-9920

Cited by

  1. Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital vol.14, pp.1, 2013, https://doi.org/10.5762/KAIS.2013.14.1.301
  2. Length of stay in PACU among surgical patients using data mining technique vol.14, pp.7, 2013, https://doi.org/10.5762/KAIS.2013.14.7.3400