Study on Thermal Properties of CdS - Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite

CdS 나노입자틀 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구

  • Park, Chun-Ho (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Eun-Ju (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jung, Jong-Mo (LG Chem. LTD. Research Park, CRD Research Institute) ;
  • Lee, Jang-Oo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Engineering, Pusan National University)
  • 박춘호 (부산대학교 고분자공학과) ;
  • 하은주 (부산대학교 고분자공학과) ;
  • 정종모 ((주)LG 화학 기술연구원 CRD 연구소) ;
  • 이장우 (부산대학교 고분자공학과) ;
  • 백현종 (부산대학교 고분자공학과)
  • Published : 2009.01.25

Abstract

We report the template-based synthesis of well-dispersed CdS nanoparticles (NPs) in the interior of poly (2-acetamidoacrylic acid) (PAAA) hydrogel as a novel type of nanocomposite without particle aggregation via ion exchange in a aqueous system. As revealed by the TEM image analysis, the mean crystallite diameter of CdS NPs embedded in hydrogel composite was 4.5 nm, and the composite did not suffer any observable change after 6 months. Desorption/decomposition of CdS/PAAA hydrogel composite was studied by evolved gas analysis-gas chromatography-mass spectrometry (EGA-GC-MS), and thermogravimetric analysis (TGA) methods. From the TGA data, the thermal stability of the composite system increased by ca. 100 $^\circ$C and the content of CdS NPs in a dry composite gel was over 70 wt%. In addition, the chemical pathway was proposed for the entire decomposition process.

Poly(2-acetamidoacrylic acid) (PAAA) 수화젤 기판 내에 수용액상에서 이온교환에 의해 잘 분산된 CdS 나노입자를 응집이 없는 새로운 형태의 나노복합체로서 합성하였다. TEM 이미지분석을 통하여, CdS/PAAA 수화젤 복합체내에 분포되어 있는 CdS 나노입자의 평균 직경은 4.5 nm이며, 복합체의 형태는 6개월이 지나도 그대로 유지됨을 알았다. TGA와 EGA를 이용하여 복합재료의 열적 안정성이 약 100도 정도 상승하며, 건조젤 내의 CdS 입자의 함량이 70 wt% 이상이 됨을 확인할 수 있었으며 또한 각 온도에서 휘발 또는 분해된 기체를 통해 성분 물질을 확인하였다.

Keywords

References

  1. T. Trindade, P. O'Brien, and N. L. Pickett, Chem. Mater., 13, 3843 (2001) https://doi.org/10.1021/cm000843p
  2. R. Rossetti, S. Nakahara, and L. E. Brus, J. Chem. Phys., 79, 1086 (1983) https://doi.org/10.1063/1.445834
  3. A. Henglein, Pure Appl. Chem., 56, 1215 (1984) https://doi.org/10.1351/pac198456091215
  4. N. Herron, Y. Wang, and H. Eckert, J. Am. Chem. Soc., 112, 1322 (1990) https://doi.org/10.1021/ja00160a004
  5. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc., 109, 5649 (1987) https://doi.org/10.1021/ja00253a015
  6. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, J. Phys. Chem., 90, 3393 (1986) https://doi.org/10.1021/j100406a018
  7. Y. Wang and N. Herron, J. Phys. Chem., 92, 4988 (1988) https://doi.org/10.1021/j100328a033
  8. L. Brus, J. Phys. Chem., 90, 2555 (1986) https://doi.org/10.1021/j100403a003
  9. R. Tenne, V. M. Nabutovsky, E. Lifshitz, and A. F. Francis, Solid State Commun., 82, 651 (1992) https://doi.org/10.1016/0038-1098(92)90055-E
  10. V. Ruxandra and S. Antohe, J. Appl. Phys., 84, 727 (1998) https://doi.org/10.1063/1.368129
  11. B. Su and K. L. Choy, Thin Solid Films, 102, 361 (2000) https://doi.org/10.1016/0040-6090(83)90052-4
  12. C. Bai, Y. Fang, Y. Zhang, and B. Chen, Langmuir, 20, 263 (2004) https://doi.org/10.1021/la035561t
  13. D. Wu, X. Ge, Z. Zhang, M. Wang, and S. Zhang, Langmuir, 20, 5192 (2004) https://doi.org/10.1021/la049405d
  14. B. I. Lemon and R. M. Crooks, J. Am. Chem. Soc., 122, 12886 (2000) https://doi.org/10.1021/ja0031321
  15. R. J. Scott, A. K. Datye, and R. M. Crooks, J. Am. Chem. Soc., 125, 3708 (2003) https://doi.org/10.1021/ja034176n
  16. R. W. J. Scott, O. M. Wilson, S. K. Oh, E. A. Kenik, and R. M. Crooks, J. Am. Chem. Soc., 126, 15583 (2004) https://doi.org/10.1021/ja0475860
  17. J. H. Youk, M. K. Park, J. Locklin, R. Advincula, J. C. Yang, and J. Mays, Langmuir, 18, 2455 (2002) https://doi.org/10.1021/la015730e
  18. M. Breulmann, H. Coelfen, H. P. Hentze, M. Antonietti, D. Walsh, and S. Mann, Adv. Mater., 10, 237 (1998) https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<237::AID-ADMA237>3.0.CO;2-6
  19. E. Kroll, F. M. Winnik, and R. F. Ziolo, Chem. Mater., 8, 1594 (1996) https://doi.org/10.1021/cm960095x
  20. S. Xu, J. Zhang, C. Paquet, Y. Lin, and E. Kumacheva, Adv. Funct. Mater., 13, 468 (2003) https://doi.org/10.1002/adfm.200304338
  21. E. J. Ha, C. H. Park, H. j. Paik, and J. O. Lee, Compos. Interfaces, in Press (2008)
  22. S. Materazzi and R. Curini, Appl. Spectrosc. Rev., 36, 169 (2001) https://doi.org/10.1081/ASR-100106155
  23. M. Kamruddin, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, Bull. Mater. Sci., 26, 449 (2003) https://doi.org/10.1007/BF02711191
  24. S. Dash, M. Kamruddin, P. K. Ajikumar, A. K. Tyagi, B. Raj, S. Bera, and S. V. Narasimhan, J. Nucl. Mater., 278, 173 (2000) https://doi.org/10.1016/S0022-3115(99)00261-5
  25. S. Dash, M. Kamruddin, P. K. Ajikumar, A. K. Tyagi, and B. Raj, Thermochim. Acta, 363, 129 (2000) https://doi.org/10.1016/S0040-6031(00)00604-3
  26. S. Dash, R. Krishnan, M. Kamruddin, A. K. Tyagi, and B. Raj, J. Nucl. Mater., 295, 281 (2001) https://doi.org/10.1016/S0022-3115(01)00481-0
  27. S. Dash, A. Singh, P. K. Ajikumar, H. Subramanian, M. Rajalakshmi, A. K. Tyagi, A. K. Arora, S. V. Narasimhan, and B. Raj, J. Nucl. Mater., 303, 156 (2002) https://doi.org/10.1016/S0022-3115(02)00816-4
  28. E. K. Yu and O. C. Kim, Kongop Hwahak, 8, 8 (1997)
  29. R. S. Asquith, K. L. Gardner, and K. W. Yeung, J. Polym. Sci. Part A: Polym. Chem., 16, 3275 (1978) https://doi.org/10.1002/pol.1978.170161220
  30. H. Tanaka, T. Suzuka, K. Hada, and Y. Tezuka, Polym. J. (Tokyo), 32, 391 (2000) https://doi.org/10.1295/polymj.32.391