Ultrahigh Molecular Weight Polyethylene Hybrid Films with Functionalized-MWNT: Thermomechanical Properties, Morphology, Gas Permeability, and Optical Transparency

기능화된 탄소나노튜브를 이용한 초고분자량 폴리에틸렌 복합체 필름: 열적 기계적 성질, 모폴로지, 전기적 성질 및 기체 투과도

  • Ko, Jeong-Ho (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Gwangju R&D Center, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 고정호 (금오공과대학교 고분자공학과) ;
  • 김정철 (한국생산기술연구원) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Published : 2009.03.25

Abstract

Ultra-high molecular weight polyethylene (UHMWPE)/functionalized-MWNT hybrid films were prepared by the solution intercalation method, using 4-cumylphenol-MWNT (CP-MWNT) as the functionalized-MWNT. The variation of the thermomechanical properties, morphology, gas permeability, and optical transparency of the hybrid films with CP-MWNT content in the range of 0$\sim$2.00 wt% were examined. The newly synthesized UHMWPE/functionalized-MWNT hybrid films were characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a universal tensile machine (UTM). It was found that the addition of only a small amount of functionalized-MWNT was sufficient to improve the thermomechanical properties of the UHMWPE hybrid films, with maximum enhancement being observed in the CP-MWNT loading in the range 0.50 to 1.00 wt%. The maximum enhancement in the oxygen gas barrier was also found at the functionalized MWNT content of 1.00 wt%. In this work, the thermomechanical properties and gas permeability of the hybrid films were found to be better than those of pure UHMWPE.

기능화 탄소나노튜브인 4-cumylphenol-MWNT(CP-MWNT)를 이용하여 초고분자량 폴리에틸렌(ultra high molecular weight polyethylene (UHMWPE))/CP-MWNT 복합체 필름을 용액 삽입법을 이용하여 제조하였다. 0에서 2.00 wt%까지의 서로 다른 CP-MWNT의 농도에 따라 만들어진 복합체 필름의 열적, 기계적, 기체 투과도 및 광학 투명성 등의 변화를 시차주사열량계, 열중량분석기, 전계 방사형 주사전자현미경과 인장시험기를 사용하여 측정하였다 복합체 필름은 기능화된 탄소나노튜브를 소량 첨가하여도 열역학적 특성이 향상되는 것을 확인할 수 있으며 0.50에서 1.00 wt%의 농도에서 최대값을 가진다. CP-MWNT의 농도가 1.00 wt%일 때 필름의 산소 기체 차단성은 최대 향상을 나타내었다. 전체적으로는 CP-MWNT가 첨가된 복합체 필름의 열적-기계적 성질 및 기체 투과도 등은 순수한 UHMWPE보다 더 향상되었다.

Keywords

References

  1. L. H. Wang, S. Ottani, and R. S. Porter, Polymer, 32, 1776 (1991) https://doi.org/10.1016/0032-3861(91)90362-M
  2. P. S. Barbour, M. H. Stone, and J. Fisher, Biomaterials, 20, 2101 (1999) https://doi.org/10.1016/S0142-9612(99)00096-4
  3. S. Ruan, P. Gao, and T. X. Yu, Polymer, 47, 1604 (2006) https://doi.org/10.1016/j.polymer.2006.01.020
  4. P. J. Lemstra, R. Kirschbaum, T. Ohta, and H. Yasuda, in Developments in Oriented Polymers-2, I. M. Ward, Editor, New York, Elsevier Applied Science Publishers, Chap. 2, 1987
  5. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mat. Sci. Eng., 49, 89 (2005) https://doi.org/10.1016/j.mser.2005.04.002
  6. J.-H. Du, J. Bai, and H.-M. Cheng, Express Polymer Letters, 1, 253 (2007) https://doi.org/10.3144/expresspolymlett.2007.39
  7. Y. Wang, J. Wu, and F. Wei, Carbon, 41, 2939 (2003) https://doi.org/10.1016/S0008-6223(03)00390-7
  8. C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules, 38, 8634 (2005) https://doi.org/10.1021/ma050823e
  9. H. Kong, C. Gao, and D. Yan, Macromolecules, 37, 4022 (2004) https://doi.org/10.1021/ma049694c
  10. Y.-P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, and D. L. Carroll, Chem. Mater., 13, 2864 (2001) https://doi.org/10.1021/cm010069l
  11. W. Song, Z. Zheng, W. Tang, and X. Wang, Polymer, 48, 3658 (2007) https://doi.org/10.1016/j.polymer.2007.04.071
  12. Y. Liu, Z. Yao, and A. Adronov, Macromolecules, 38, 1172 (2005) https://doi.org/10.1021/ma048273s
  13. G. Guo, D. Yang, C. Wang, and S. Yang, Macromolecules, 39, 9035 (2006) https://doi.org/10.1021/ma061715a
  14. K. Mylvaganam and L. C. Zhang, J. Phys. Chem. B, 108, 15009 (2004) https://doi.org/10.1021/jp048061x
  15. C. Velasco-Santos, A. L. Martinez-Hernandez, and V. M. Castano, Compos. Interface, 11, 567 (2005) https://doi.org/10.1163/1568554053148807
  16. M. Moniruzzaman and K. I. Winey Macromolecules, 39, 5194 (2006) https://doi.org/10.1021/ma060733p
  17. J. P. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, Chem. Commun., 193 (2001)
  18. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Letters, 3, 269 (2003) https://doi.org/10.1021/nl025924u
  19. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000) https://doi.org/10.1103/PhysRevLett.84.5552
  20. Y. Z. You, C. Y. Hong, and C. Y. Pan, Macromol. Rapid Commun., 27, 2001 (2006) https://doi.org/10.1002/marc.200600573
  21. R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Polymer, 47, 2381 (2006) https://doi.org/10.1016/j.polymer.2006.01.087
  22. T.-E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, and A. P. Sokolov, Polymer, 47, 7740 (2006) https://doi.org/10.1016/j.polymer.2006.09.013
  23. E. B. Barros, A. G. Souza Filho, V. Lemos, J. Mendes Filho, S. B. Fagan, M. H. Herbst, J. M. Rosolen, C. A. Luengo, and J. G. Huber, Carbon, 43, 2495 (2005) https://doi.org/10.1016/j.carbon.2005.04.032
  24. K. L. Strong, D. P. Anderson, K. Lafdi, and J. N. Kuhn, Carbon, 41, 1477 (2003) https://doi.org/10.1016/S0008-6223(03)00014-9
  25. H. Ding, Y. Tian, L. Wang, and B. Liu, J. Appl. Polym. Sci., 105, 3355 (2007)
  26. Q. Chen, Y. Xi, Y. Bin, and M. Matsuo, J. Polym. Sci. Part B: Polym. Phys., 46, 359 (2008) https://doi.org/10.1002/polb.21371
  27. L. Fang, Y. Leng, and P. Gao, Biomaterials, 26, 3471 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.022
  28. H. A. Khonakdar, S. H. Jafari, and R. Hassler, J. Appl. Polym. Sci., 104, 1654 (2007) https://doi.org/10.1002/app.25790
  29. T. Ramanathan, H. Liu, and L. C. Brinson, J. Polym. Sci. Part B: Polym. Phys., 43, 2269 (2005) https://doi.org/10.1002/polb.20510
  30. J. Y. Kim and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44, 1062 (2006) https://doi.org/10.1002/polb.20728
  31. J. N. Coleman, U. Khan, and Y. K. Gun'ko, Adv. Mater., 18, 689 (2006) https://doi.org/10.1002/adma.200501851
  32. A. Rasheed, H. G. Chae, S. Kumar, and M. D. Dadmun, Polymer, 47, 4734 (2006) https://doi.org/10.1016/j.polymer.2006.04.016
  33. X. Chen, K. H. Yoon, C. Burger, I. Sics, D. Fang, B. S. Hsiao, and B. Chu, Macromolecules, 38, 3883 (2005) https://doi.org/10.1021/ma047978r
  34. Y. Q. Xue, T. A. Tervoort, and P. J. Lemstra, Macromolecules, 31, 3075 (1998) https://doi.org/10.1021/ma970544u
  35. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002) https://doi.org/10.1016/S0032-3861(01)00790-X
  36. C. Joly, M. Smaihi, L. Porcarm, and R. D. Noble, Chem. Mater., 11, 2331 (1999) https://doi.org/10.1021/cm9805018
  37. T. Ebeling, S. Norek, A. Hasan, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 71, 1461 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9<1461::AID-APP11>3.0.CO;2-0
  38. D. H. Weinkauf and D. R. Paul, in Effect of Structural Order on Barrier Properties, W. J. Koros, Americal Chemical Society, Washington, DC, 1990
  39. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003) https://doi.org/10.1016/S0032-3861(03)00539-1
  40. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006) https://doi.org/10.1016/j.polymer.2005.11.028
  41. A. Nogales, G. Broza, Z. Roslaniec, K. Schulte, I. Sics, B. S. Hsiao, A. Sant, M. C. Garcia-Gutierrez, D. R. Rueda, C. Domingo, and T. A. Ezquerra, Macromolecules, 37, 7669 (2004) https://doi.org/10.1021/ma049440r
  42. Y. Bin, M. Kitanaka, D. Zhu, and M. Matsuo, Macromolecules, 36, 6213, (2003) https://doi.org/10.1021/ma0301956
  43. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A-Mater., 69, 255 (1999) https://doi.org/10.1007/s003390050999