
IEMS Vol. 8, No. 1, pp. 29-36, March 2009.

Multi-Exchange Neighborhood Search Heuristics
for the Multi-Source Capacitated Facility Location

Problem

Chiuh-Cheng Chyu†
Department of Industrial Engineering and Management

Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, 320, Taiwan.
Tel: 886-3-4638800 ext 2511, Fax: +886-3-4638907, E-mail: iehshsu@saturn.yzu.edu.tw

Wei-Shung Chang

Department of Industrial Engineering and Management
Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, 320, Taiwan.

Tel: 886-3-4638800 ext 2511, Fax: +886-3-4638907

Received July 17 2008/Accepted September 8 2008

Abstract. We present two local-search based metaheuristics for the multi-source capacitated facility location
problem. In such a problem, each customer’s demand can be supplied by one or more facilities. The problem is
NP-hard and the number of locations in the optimal solution is unknown. To keep the search process effective,
the proposed methods adopt the following features: (1) a multi-exchange neighborhood structure, (2) a tabu list
that keeps track of recently visited solutions, and (3) a multi-start to enhance the diversified search paths. The
transportation simplex method is applied in an efficient manner to obtain the optimal solutions to neighbors of
the current solution under the algorithm framework. Two in-and-out selection rules are also proposed in the
algorithms with the purpose of finding promising solutions in a short computational time. Our computational
results for some of the benchmark instances, as well as some instances generated using a method in the literature,
have demonstrated the effectiveness of this approach.

Keywords: Capacitated Facility Location Problems, Transportation Simplex Method, Sensitivity Analysis,

Simulated Annealing, Variable Neighborhood Structures

1. INTRODUCTION

The facility location problem has been a popular re-
search topic in operations research since the early 1960s.
Given a set of potential locations for facility and a set of
customers, the objective of the facility location problem is
to open facility in such a way that the total cost of open-
ing facility and satisfying customers’ demand is the mini-
mum. This problem has applications in deciding place-
ments of warehouses, factories, hospitals, schools, and
proxy servers on the web.

Generally, the facility location problem can be di-
vided into two categories: uncapacitated facility location
problems (UFLP) and capacitated facility location prob-
lems (CFLP). In the UFLP, each facility is assumed to
have unlimited capacity. This is frequently the case in
small electronic components such as capacitors, resistors,

etc. The CFLP can be further divided into two classes:
single-source (SSCFLP) and multi-source (MSCFLP).
For the former, each customer’s demand is supplied by
exactly one facility. On the other hand, for the MSCFLP,
a customer’s demand is supplied by one or more facilities.
The facility location problem without capacity constraints
is NP-hard (Lenstra et al., 1978), but this problem is not
harder than the CFLP, regardless of being single-source or
multi-source. Accordingly, both CFLPs are NP-hard. There
has been much research focused on SSCFLP, but signifi-
cantly less effort has been devoted to the MSCFLP.

A SSCFLP is more difficult for finding an optimal
solution than the MSCFLP under the same problem struc-
ture. Given a set of opened facilities, the resulting SSC-
FLP is an optimal set partitioning problem, which is NP-
hard, but the resulting MSCFLP is a transportation prob-
lem, which belongs to class P and can be solved optimally

† : Corresponding Author

30 Chiuh-Cheng Chyu·Wei-Shung Chang

by the well-known transportation simplex algorithm on
average in polynomial time. The Lagrangian relaxation
techniques have been extensively applied to solve the
SSCFLP (Pirku, 1897, Sridharan, 1993, Beasley, 1993,
Holmberg and Rönnqvist, 1999, Cortinhal and Captivo,
2003). These methods are different in that lower bounds
and feasible solutions are generated. Recently, heuristics
such as Tabu search, Simulated Annealing, and Genetic
algorithms have been applied to solve the SSCFLP and its
variants (Arostegui et al., 2006). Ahuja et al. (2004) de-
veloped a heuristic using very large-scale neighborhood
structures (VLSN), including single-customer multi-ex-
changes, multi-customer multi-exchanges, and three types
of facility moves-opening, closing, and transferring. Their
computational results show that the VLSN outperforms
the Holmberg’s Largrangian heuristic for the large size
benchmark instances generated by Holmberg et al. (1999).

Sirdharan (1995) provides a comprehensive survey
for the MSCFLP. Most solution approaches are also based
on Lagrangian relaxation. Korupolu and Plaxton (2000)
present an analysis of a local search heuristic using the
facility moves mentioned above for various facility loca-
tion problems; in particular, they prove that their heuristic
yields a solution with an (8 + ε) approximation bound for
MSCFLP. Barahona and Chudak (2005) propose a heuris-
tic combining the volume algorithm (Barahona and Anbil,
2000) and the randomized rounding algorithm for solving
large scale instances with problem sizes from 300×300 to
1000×1000. The volume algorithm solves the Lagrangian
relaxation problem for lower bounds, and the randomized
rounding algorithm is used for producing feasible solu-
tions. The algorithm terminates when the gap between the
value of the current best feasible solution and the current
lower bound becomes less than 1%, or the iterations of
the volume algorithms have reached a preset value. Klose
and Drexl (2005) propose a new lower bound method for
the MSCFLP based on partitioning the plant set and em-
ploying column generation.

The optimal cost of a SSCFLP is in general larger
than its corresponding MSCFLP since the feasible solu-
tion set of the former is included in that of the latter. In
practice, unless it is specified that the single-source condi-
tion must be satisfied, solving the MSCFLP is more ap-
propriate than solving the SSCFLP. This paper aims at
developing a simple and effective approach to solve the
MSCFLP. The approach covers the concepts and tech-
niques that are familiar to most OR practitioners, and is
easy to be implemented. Unlike many published articles
that solve the MSCFLP using the Lagrangean relaxation
method as the core technique, our approach adopts a sim-
ple solution representation structure, which can easily
corperate with the transportation simplex method under a
simple local search metaheuristic framework to solve the
MSCFLP. To avoid spending much computational time
on solving the transportation problem whenever a new
solution list is generated, the proposed approach adopts
different small-change neighborhood structures so that the
reoptimization technique in the transportation simplex

method can be applied to quickly find new optimal solu-
tions. Accordingly, local-search based metaheuristics ap-
pear to be proper methods for solving the MSCFLP. In
addition, because the set of the opened facilities in the
optimal solution is unknown, variable neighborhood struc-
ture is a proper choice for designing an effective algorithm.

Based on the above observation and knowledge, we
propose two local-search based algorithms for the MSC-
FLP: one uses adaptive simulated annealing (SA) with
tabu list, and the other can be regarded as a variant of
variable neighborhood search, which we will call variable
neighborhood local search (VNLS). The MSCFLP has
large-scale benchmark instances in the OR library. To test
the performance of the proposed methods, additional test
instances of various problem sizes that are solvable by the
LINGO optimizer were generated.

The remainder of the paper is organized as follows:
Section 2 describes the MSCFLP in detail and presents a
mathematical model. Section 3 illustrates the adaptive SA
and the VNLS. Section 4 presents the numerical results of
the proposed algorithms using the instances in the OR
Library, instances created by Holmberg et al. (1999), and
instances created in this paper. Section 5 concludes the
paper.

2. PROBLEM DESCRIPTION AND FORMU-
LATION

The multi-source capacitated facility location prob-
lem can be described as follows: Let G = (F, C) be a bi-
partite network, where F is the set of facilities with cardi-
nality |F| = M, and C is the set of customers with cardinal-
ity |C| = N. Let fi denote the opening cost of facility i, Cij
the unit shipping cost from facility i to customer j, Si the
capacity of facility i, and Dj the demand of customer j.
The problem is to find a subset FI ∈ of facilities that
should be opened, and a transportation assignment for
shipping total demanded goods from these opened facili-
ties to all customers such that the total cost is the mini-
mum. The following is the integer programming model
for this problem.

Minimize

1 1 1

M N M

ij ij i i
i j i

c x f y
= = =

+∑∑ ∑ (1)

 s.t.
 1

 1, ,
N

ij i i
j

x S y i M
=

≤ =∑ L

(2)

1

 1, ,
M

ij j
i

x D j N
=

≥ =∑ L

(3)

{ }0, 1 1, ,iy i M∈ = L
(4)

 0 1, , ; 1, ,ijx i M j N≥ = =L L
(5)

In the above mathematical model, xij is the number

of units shipped from facility i to customer j, and yi = 1 if
facility i is open and 0 otherwise. The set of constraints
(2) confines in such a way that the total supply by facility

 Multi-Exchange Neighborhood Search Heuristics for the Multi-Source Capacitated Facility Location Problem 31

i can never exceed its capacity once this facility is open,
and the set of constraints (3) restricts the demand of each
customer to be satisfied. Expression (1) presents the mi-
nimization of the objective function which considers the
facility opening cost and the transportation cost for ship-
ping all required units.

3. LOCAL-SEARCH BASED ALGORITHMS

Two types of local-search based metaheuristics are
developed to solve the MSCFLP: one is under the simu-
lating annealing framework, and the other uses the varia-
ble neighborhood local search framework. The solution
representation and basic neighborhood structures of either
algorithm framework are the same, but they are employed
in different manners with the objective of finding a near
optimal solution in a short computational time.

3.1 Solution Representation and Neighborhood Struc-
tures

One of the main difficulties of dealing with the MS-
CFLP is that the number of opened facilities in an optimal
solution is unknown. To avoid missing this optimal num-
ber, we define a basic neighborhood structure in which
each neighboring unit contains four neighbors of three
types: (1) one neighbor of opening one more facility, (2)
one neighbor of closing one opened facility, and (3) two
neighbors of closing one while opening another one. The
best solution among these four neighbors will be selected
as the candidate for contesting the next current solution. If
the cost value of this candidate is smaller than that of the
current solution or is larger but passes the acceptance test,
then the candidate becomes the next current solution;
otherwise, another neighboring unit is generated and the
best one will again be selected as the candidate.

Given a selected set of open facilities, the resulting
problem becomes a transportation problem which can be
efficiently solved to optimality by the transportation
simplex method. Thus, any solution can be represented by
a selection list; i.e., the ith space of the list has value 1 if
facility i is open; otherwise it has value 0. Figure 3.1
presents a solution list for a problem with five facilities,
where facilities 1, 3, and 4 are opened and facilities 2 and
5 are closed, and displays an example of one-out one-in
neighbor generation: close facility 3 of the current solu-
tion x and open facility 5.

Figure 3.1. A one-out and one-in neighbor of solution x.

Examples of extensive neighborhood structure can
be two-out, two-in, two-out and two-in, three-out and
three-in, etc. It is intuitive that, as the problem size grows,
combining the use of large and small neighborhoods will
increase the chance of producing or promoting a favora-
ble result since it implies that the algorithm will explore
solution space more globally and locally.

3.2 Computational Issues on Generating a Neighboring
Unit

When a neighbor is generated, it will be extremely
inefficient if the new problem is solved by restarting the
transportation simplex method. For example, in the one-
out one-in case, since the neighbor has closed one facility
(one row deleted) while opening another new one at the
same time (another row added), the computational time
will be greatly reduced if we continue the current optimal
basic feasible solution to reoptimize the new problem.
Our experimental results have proved that such is true.
This simple technique will be of great help in solving
large size problems.

Figure 3.2 shows the reoptimization method for a
new neighbor of one-out and one-in type. In this example,
facility 3 is out and facility 5 is in. The upper table is the
optimal basic variable solution when facilities 1, 3, and 4
are open. The lower table shows the reoptimization me-
thod. Since the second row is to be removed, all transpor-
tation costs of this row are set to be a large number M
except for the last column, which represents the unused
capacity of facility 3. On the other hand, we add the se-
lected facility 5 to the last row and assign the dummy
slack as a basic variable with a value equal to the capacity
of facility 5. By doing so, when the optimal solution to
the augmented problem is obtained, the dummy slack of
the second row has a value 200, and this row can then be
deleted. Thus, the new optimal basic feasible solution
without this row is optimal to the neighbor.

As for the other two basic types of neighbors, if a
neighbor is one-out, all transportation costs of the selected
row are assigned a big value M except for the last column.
If a neighbor is one-in, then the selected facility is added
to the last row with its dummy slack serving as a basic
variable.

A neighbor defined by two-out and two-in can also
be reoptimized by executing one-out one-in exchange two
times in a row. The same approach is applied to finding
the optimal solution to the following neighbors: k-out and
k-in, k-out, and k-in for k ≥ 2.

3.3 Neighbors Generation Method

Two rules are used to generate neighbors of the cur-
rent solution: (1) random selection (2) average cost per
unit shipped. In the random selection rule, both facility-
outs and facility-ins are selected randomly and the result-
ing neighbor is accepted when the total supply-demand
constraint is not violated. In the second rule, the average

32 Chiuh-Cheng Chyu·Wei-Shung Chang

cost per shipped unit (denoted ACi) for facility i is defined
as follows.

transportation cost per shipment

capacity usediAC =
 (6)

opening cost
capacity used (shipments / period) β

+
⋅

In the example of Figure 3.2, if the opening cost of

facility 3 is 1000 and β = 2 shipments per period, then the
average cost per shipped unit is

3
50 6 200 5 1000 7.2

450 - 200 (450-200) 2
AC ⋅ + ⋅

= + =
⋅

On the other hand, the entry average cost of the add-

ed facility 5, which has opening cost 600 per period, is
computed based on the current status of the leaving facili-
ty 3:

5
50 5 200 4 600 5.4 7.2

250 250 2
entryAC ⋅ + ⋅

= + = <
⋅

It is clear that the optimal solution of the neighbor

will be better than the current solution since the reoptimi-
zation has not been done yet. Under this rule, we choose
an opened facility with the largest average cost to be
closed, and choose a closed facility with the smallest av-
erage cost to be opened. In either selection, if there hap-
pens to be a tie, then one is randomly selected.

Figure 3.2. Reoptimizing a 1-out 1-in neighbor of the

current solution.

3.4 Simulated Annealing

Simulated annealing (SA) is an iterative algorithm
that consists of a chain of local searches. The search of
SA starts from an initial feasible solution. During the
search process, a neighbor is usually generated according

to a simple rule, and the cost value of this neighbor is
compared to that of the current solution. If the cost value
of the neighbor is lower than that of the current solution,
then this neighbor replaces the current solution. However,
if the neighbor does not improve the current solution,
there is still a chance of replacement according to the
following probability function:

Pr {acceptance of transition} exp i

i

C
T

⎛ ⎞Δ
= −⎜ ⎟

⎝ ⎠
 (7)

where ΔCi is the cost difference between the neighbor
and the current solution in iteration i, and Ti is the control
parameter known as temperature. If the transition from
the current solution to the neighbor is rejected, another
solution in the neighborhood will be generated and eva-
luated.

Four SA procedures are considered in this paper: (1)
std-SA-rdm, (2) adt-SA-rdm, (3) adt-SA-tb-rdm, and (4)
adt-SA-tb-rule, where “std-SA” means that the algorithm
uses standard SA procedure with geometric cooling
scheme, “adt” means that the SA algorithm uses the adap-
tive annealing scheme according to the formula proposed
by Aarts and Korst(1991), “tb” implies that the algorithm
uses tabu list, “rdm” means that the algorithm uses ran-
dom rule to select in and out facilities, and “rule”
represents that the algorithm adopts the deterministic rule
described in section 3.3.

Aarts and Korst (1991) provided an adaptive anneal-
ing formula shown below:

1 1 (1) / 3
i

i
i i

T
T

T Ln δ σ+ =
+ ⋅ +

(8)

where Ti is the temperature in iteration i, iσ is the

standard deviation of the visited solutions in iteration i,
and δ is an empirical distance parameter and normally
takes the value 0.5. Small values of δ lead to large
decrements in Ti+1. Aarts and Korst also provided a for-
mula for the initial temperature T0, but our experimental
result indicates that the initial temperature does not work
better than a constant obtained from the experiment.

In the proposed four SAs, every neighboring unit
consists of four neighbors of different types: one-in, one-
out, one-in one-out, and two-in two-out. Thus, an iteration
of a neighboring unit will produce four solutions, and the
best one of them is chosen to compete for the position of
current representative solution. The proposed SAs use the
strategy of restarting the algorithm when any of preset
conditions is met. For each annealing temperature, the
Markov chain performs ten transitions. A process will
stop when one of the following two conditions is satis-
fied: (1) No further improvement occurs during the last
30 transitions, and (2) The maximum number of transi-
tions has been reached. For each searching process of the
three adaptive SA procedures, ten annealing temperatures
are generated according to formula (8) with initial tem-
perature set at 100, which is concluded based on our

 Multi-Exchange Neighborhood Search Heuristics for the Multi-Source Capacitated Facility Location Problem 33

computational experiment. The algorithms will stop if ten
restarting processes have been performed. The length of
the tabu list is set as the number of facilities divided by
five. In std-SA-rdm, the cooling scheme is 1T ,i iTα+ = ⋅

1, , 50i = L with 95.0=α , and at each temperature the
Markov chain performs 20 transitions. Introducing a tabu
list will improve the performance of the proposed SA
algorithm, as demonstrated by the experimental results
with the instances provided by Holmberg (see Tables 4.1 -
4.3).

Each of the four SA procedures will compute at most
one thousand neighboring unit iterations; in other words,
a maximum total of four thousand solutions.

3.5 Variable Neighborhood Local Search

The variable neighborhood local search (VNLS) al-
gorithm defines three neighborhood structures: N1, N2,
and N3. The neighboring unit of Nk consists of one k-in
neighbor, one k-out neighbor, and two k-in k-out neigh-
bors; i.e., an iteration of local search produces four solu-
tions. Likewise, if the best of the four solutions is better
than the current best one, then the current best will be
substituted; otherwise, another neighboring unit is gener-
ated and compared. A tabu list is used to escape from
searching the solution space that has previously been ex-
plored. The distance between the current best solution and
its neighbors in Nk will become farther as k increases. The
local search in N1 is intensive, focusing on searching a
local optimum within a small region near the current best
solution, whereas the solution search in N3 is more exten-
sive, exploring a better solution at a farther distance from
the current best solution. The parameter used for advanc-
ing to the next neighborhood is set to be M, where M is
the number of facility locations in the problem. The algo-
rithm stop condition is one thousand neighboring unit
iterations. The random rule and deterministic rule de-
scribed in section 3.3 are also applied in the VNLS, and
will be denoted as VNLS-tb-rdm and VNLS-tb-rule, re-
spectively. Figure 3.3 presents the algorithm framework.

Figure 3.3.Variable neighborhood local search algorithm.

4. NUMERICAL RESULTS

In this section, the performance of the six local-se-

arch based algorithms is presented. These algorithms are
encoded in Microsoft Visual C++ 6.0 and tested using a
PC Pentium IV with 3.0GHz and 1024MB DDR2 SDRAM.

Two sets of benchmark instances are used to test the
performance of the six algorithms. One set is taken from
Holmberg (1999), which provides 71 instances. The num-
ber of facilities and customers grow as the instance num-
ber increases, ranging from 10×50 to 30×200, where the
first figure represents the number of facility locations and
the second one represents the number of customers. The
other set has large 100×1000 sized problems, which are
taken from the OR Library. The Holmberg instances are
originally of single-source type; i.e., for each customer,
only his demand quantity and the total transportation cost
associated with each facility are given. The test instances
can be converted into a multi-source type when these total
transportation costs are divided by the corresponding de-
mand quantities. These converted instances are then
solved to optimality by LINGO 8.0.

In the experiment, all SA procedures set the initial
temperature at 100. Both SA and VNLS set β = 2 when-
ever the deterministic rule is used. The algorithms solve
each instance using five independent runs. Two perfor-
mance measures for the algorithms are used: minimum
deviation (min. dev.) and average deviation (ave. dev.)
from the optimal value. The minimum deviation is de-
fined as the ratio of the difference between the best value
of the five runs and the optimal value over the optimal
value, whereas the average deviation takes the difference
between the average of the five runs and the optimal val-
ue. We can observe from Table 4.1 that all algorithms
produce satisfactory results in terms of the minimum and
the average deviations from the optimal values for large
size instances of Holmberg, but the three algorithms, adt-
SA-tb-rdm, adt-SA-tb-rule, and VNLS-tb-rdm, perform
significantly better than the other three. It is little surprise
that algorithm VNLS-tb-rule does not perform well on
these instances. It is likely due to the following reasons:
(1) Each of the ten searching processes only accepts solu-
tion that surpasses the current best one, (2) The set of
facility locations in these instances is not sufficiently big
and applying this rule is likely to converge quickly to a
local optimal solution in a small region even though a
tabu list is used, and (3) The solution searches with nei-
ghbor 3-in and with neighbor 3-out in N3 are likely to be
ineffective due to small or medium problem size, and sup-
ply-demand and cost structures; i.e., a neighbor of adding
three facilities generally produces larger cost while a
neighbor of closing three facilities is likely infeasible.

The parameter setting of β greatly influences the per-
formance of the adt-SA-tb-rule. This algorithm performs
very well on problems of large sizes with parameter β ≥
1 , but performs poorly with parameter 6β ≥ . Our expe-
rimental results show that a combination of β = 0.1, 0.5,
1.0 will find optimal solutions within five replication runs
for all large size Holmberg instances.

A similar conclusion holds for these algorithms when
all categories of Holmberg instances are considered. Table

34 Chiuh-Cheng Chyu·Wei-Shung Chang

4.2 displays the number of optimal solutions found in
each category based on five runs. Again, the three algo-
rithms with better performance significantly surpass the
others. In particular, algorithm VNLS-tb-rdm seems to be
the best among all, which is concluded according to the
number of optimal solutions found in each category or the
average deviation from the optimal values based on all
Holmberg instances.

Table 4.3 shows the computational results of the al-
gorithms for the large instances drawn from OR Library.
Obviously, the two VNLS algorithms outperform the four
SAs. In particular, VNLS-tb-rule clearly exceeds the per-
formance of all the others in terms of deviations from
optimal values, regardless of the average performance of
five runs or the best performance of five runs. Further-
more, adt-SA-tb-rule and VNLS-tb-rule solve these OR
library instances with shorter computational time than the
others. The experimental results indicate that using the
VNLS-tb-rule is more likely to produce good results in a
short computational time for very large size instances.

In addition to the above benchmark instances, five
50×200 instances and five 100×200 instances are generat-
ed using the method described below. The LINGO 8.0
optimizer is capable of solving optimally the five 50×200
instances within one hour, but it will terminate with a
local optimal solution for each of the larger size 100×200
instances within the software problem solving capacity.
Thus, the computational time of the LINGO optimizer for
the 100×200 instances was set to two hours, and the ob-
tained upper bounds and lower bounds will be used for
evaluating the performance of the proposed heuristic.

Table 4.3. Performance of the algorithms on large size
instances (OR Library, 100×1000).

Algorithm
Deviation (%)

Ave. CPU sec.
Min. Ave.

std-SA-rdm 4.58 2.01 402.60
adt-SA-tb-rdm 4.86 3.07 444.65
adt_SA_rdm 5.61 2.03 404.50

adt-SA-tb-rule 2.38 1.59 289.19
VNLS-tb-rdm 0.37 1.50 541.75
VNLS-tb-rule 0.02 0.81 371.37

The method to generate these ten instances is sum-

marized below:
First of all, m two-dimension coordinates locations

are randomly generated on the interval (100, 500). Then
the heuristic for selecting the p-median by Teitz and Bart
(1968) is used to choose the locations of candidate facili-
ties from these coordinates. Finally, the locations of the N
customers are selected from the remaining locations.

In the next step, the transportation cost from facility i
to customer j, denoted Cij, is a product of the distance dij
and a random number from U [5, 10]; that is, a uniform
distribution on the interval [5, 10]. To generate the de-
mand for each customer of the instances, the procedure is
as follows:

At first, the total demand D is chosen. Consequently,
the average demand of each customer, dave, is D/N. The
standard deviation of a customer’s demand, dsd, is drawn
from a random number from aved ⋅U [0.5, 1]. A custom-

Table 4.1. Performance of the algorithms on large instances from Holmberg instances

 30×150 (hol 25-40) 30×200(hol 56-71)

Algorithm
Deviation (%)

Ave. CPU sec.
Deviation (%)

Ave. CPU sec.
Min. Ave. Min Ave.

std-SA-rdm 0.06 0.38 10.76 0.39 0.94 20.38
adt-SA-tb-rdm 0.00 0.16 13.29 0.25 0.90 21.66

adt-SA-rdm 0.76 1.29 9.44 0.40 1.30 20.60
adt-SA-tb-rule 0.00 0.34 12.08 0.06 0.48 17.87
VNLS-tb-rdm 0.00 0.08 24.58 0.03 0.49 34.96
VNLS-tb-rule 0.20 1.41 19.70 0.61 1.80 26.43

Table 4.2. Number of optimal solutions found by the algorithms on all test instances.

Algorithm
10×50

(hol 1-12)
20×50

(hol 13-24)
30×150

(hol 25-40)
variation

(hol 41-55)
30×200

(hol 56-71)
all

(hol 1-71)
optimal solutions found within five runs Deviation (%)

std-SA-rdm 12 12 14 13 9 0.59
adt-SA-tb-rdm 12 12 16 14 11 0.33

adt-SA-rdm 11 10 14 14 8 1.05
adt SA-tb-rule 12 12 16 12 13 0.28
VNLS-tb-rdm 12 12 16 14 13 0.19
VNLS-tb-rule 12 10 11 11 9 0.99

 Multi-Exchange Neighborhood Search Heuristics for the Multi-Source Capacitated Facility Location Problem 35

er’s demand then takes a number randomly generated
from U [dave- dsd, dave+ dsd]. Likewise, a similar procedure
is used to determine the capacity of a facility based on a
given total capacity of the facilities. The opening cost of
facility i, fi, is counted as a product of three numbers: a
constant, capacity of facility i, and a random number from
U[0.6, 0.8]. Two test sets are generated: one of problem
size 50×200 and the other of problem size 100×200. Each
set has five instances. The ratio of total capacity over total
demand for the 50×200 instances is about 4, whereas that
for the 100×200 is about 8.

An experiment was conducted to learn the computa-
tional complexity of the LINGO optimizer in solving the
MSCFLP with respect to different capacity/demand ratios.
In the experiment, three test instances of problem size 25
×50 are generated for ratios with a range between 1.1 and
4. The experimental results indicate that the LINGO op-
timizer can optimally solve for small ratios MSCFLP in a
short computational time, particularly when the ratios are
between 1.05 and 1.4. The MSCFLP becomes hard when

the capacity/demand ratio is large.
In the experiment on the 50×200 and 100×200 test

instances, the VNLS algorithms solve each instance with
five independent runs. The termination condition of each
run on a 50×200 instance is 4,000 solutions, and on a 100
×200 instance is 20,000 solutions. For both types of in-
stances, the running times of the VNLS-tb-rule are shorter
than those of the VNLS-tb-rdm, but the former behaves
slightly worse than the latter in terms of the average per-
formance and the best performance. Such results are simi-
lar to those of other types of instances. When compared
with the LINGO optimizer, the VNLS algorithms are ap-
parently better in practice. As perceived from Table 4.4,
the LINGO optimizer will take on average 1422.8
seconds to find an optimal solution for the five 50×200
instances, whereas the two VNLS algorithms will find the
optimal solution in a much shorter time with an average
of approximately 50 seconds for rule and 75 seconds for
random. Such estimates are taken based on the fact that
the minimum of the five trials have found the optimal

Table 4.4. Performance of the VNLS algorithms on 50 facilities and 200 customers instances (5 replicates).

 VNLS-tb-rdm VNLS-tb-rule LINGO

No.
Deviation (%)

Ave. CPU sec.
Deviation (%)

Ave. CPU sec. CPU sec.
Min Ave. Min Ave.

1 0.00 0.29 30.63 0.00 0.28 20.39 2224
2 0.00 0.00 28.25 0.00 0.29 18.97 173
3 0.00 1.18 32.30 0.00 0.77 22.45 2647
4 0.00 0.00 31.88 0.00 0.61 22.00 1396
5 0.00 1.70 36.60 0.00 1.36 20.12 674

Ave. 0.00 0.63 31.20 0.00 0.66 20.79 1422.8

Table 4.5. Performance of LINGO on 100 facilities and 200 customs instances (2 hours).

No. (1)
LINGO upper bound

(2)
LINGO lower bound Gap =((1)-(2))/(2) Ave.

=((1)+(2))/2 CPU sec.

1 3686663 3657223 0.80% 3671943 7200
2 4001222 3890340 2.85% 3945781 7200
3 3779116 3744243 0.93% 3761680 7200
4 3981152 3939400 1.06% 3960276 7200
5 3903840 3809992 2.46% 3856916 7200

Table 4.6. Performance of VNLS algorithms on100 facilities and 200 customs instances (5 replicates).

 VNLS-tb-rdm VNLS-tb-rule

No.
Deviation (%) Ave.

CPU sec.

Deviation (%) Ave. CPU
sec. Min vs LINGO

upper bound
Ave. vs LINGO

lower bound
Ave. vs

LINGO Ave.
Min vs LINGO

upper bound
Ave. vs LINGO

lower bound
Ave. vs

LINGO Ave.
1 0.00 0.80 0.40 30.63 0.00 1.13 0.72 20.39
2 -0.84 3.92 2.46 28.25 -0.84 5.41 3.93 18.97
3 -0.04 4.34 3.85 32.30 -0.04 6.15 5.66 22.45
4 -0.04 2.49 1.95 31.88 3.59 4.94 4.38 22.00
5 -0.87 3.74 2.48 36.60 -0.87 5.40 4.12 20.12

Ave. -0.36 3.06 2.23 31.20 0.37 4.61 3.76 20.79

36 Chiuh-Cheng Chyu·Wei-Shung Chang

solutions for both algorithms and it is assumed that the
optimal solution was found at the 2.5th trial. Meanwhile,
the average deviations of the two VNLS algorithms are
about the same. As a whole, the performance of the
VNLS-tb-rule is superior to the VNLS-tb-rdm and LIN-
GO optimizer.

In the experiment of 100×200 instances, the two VNLS
algorithms are also superior to the LINGO optimizer in
terms of solution quality and computational time. In Table
4.5, the LINGO optimizer can not optimally solve any of
the five instances within two hours. The VNLS-tb-rdm
can find better solutions than the LINGO optimizer in a
much shorter running time for all the five instances, while
the VNLS-tb-rule outperforms the LINGO optimizer in
four of five instances. Table 4.6 presents the numerical
results of both VNLS algorithms on these test instances.
The performance measures using the average of upper
bound and lower bound and using the lower bound show
that both VNLS algorithms can find good solutions to
these instances in short computational times. Similar to
the numerical results of other instances, the VNLS-tb-rdm
is better than the VNLS-tb-rule in solution quality but
worse in computational time. The VNLS-tb-rdm can ex-
plore solutions in more diversified regions than the
VNLS-tb-rule.

5. CONCLUSION

This paper presents two simple but effective local-
search based algorithms for the multi-source capacitated
facility location problem. One uses a SA framework and
the other uses a variable neighborhood structures frame-
work. The numerical results show that an SA with adap-
tive temperature control and tabu list achieves excellent
performance on the test instances provided by Holmberg
(1999). Also, a VNLS with random rule and tabu list ob-
tains slightly better performance than the hybrid SA with
either random rule or deterministic rule. Experiments on
test instances of larger problem sizes also indicate that the
performances of the two VNLS algorithms are superior to
the commercial optimization software package-LINGO
8.0. In particular, algorithm VNLS-tb-rule works very
well in terms of solution searching effectiveness and effi-
ciency for the large size test instances in the OR library.

REFERENCES

Aart, E. H. L. and Korst, J. H. M. (1991), Simulated an-
nealing Boltzmann machines: a stochastic approach
to combinatorial optimization and neural computing,

John Wiley, Chichester.
Ahuja, R. K., Liu, J., Orlin, J. B., Goodstein, J., and Muk-

herjee, A. (2004). A neighborhood search algorithm
for the combined through and fleet assignment mo-
del with time windows, Networks, 44(2), 160-171.

Arostegui, Jr., M. A., Kadipasaoglu, S. N., and Khuma-
wala, B. M. (2006), An empirical comparison of ta-
bu search, simulated annealing, and genetic algo-
rithms for facilities location problems, International
Journal of Production Economics, 103(2), 742-754.

Barahona, F., Anbil, R. (2000), The volume algorithm:
Producing primal solutions with a subgradient me-
thod, Mathematical Programming, Series B 87(3),
385-399.

Barahona, F. and Chudak, F. A. (2005), Near-optimal so-
lutions to large-scale facility location problems, Dis-
crete Optimization, 2(1), 35-50.

Beasley, J. E. (1993), Lagrangian heuristics for location
problems, European Journal of Operational Rese-
arch, 65(3), 383-399.

Cortinhal, M. J., Captivo, M. E. (2003), Upper and lower
bounds for the single source capacitated location
problem, European Journal of Operational Research,
151(2), 333-351.

Holmberg, K., Rönnqvist, M., and Yuan, D. (1999), An
exact algorithm for the capacitated facility location
problems with single sourcing, European Journal of
Operational Research, 113(3), 544-559.

Klose, A. and Drexl, A., (2005), Lower bounds for the
capacitated facility location problem based on col-
umn generation, Management Science, 51(11), 1689-
1705.

Korupolu, M. R., Plaxton, C. G., Rajaraman, R. (2000),
Analysis of a local search heuristic for facility loca-
tion problems, Journal of Algorithms, 37(1), 146-188.

Lenstra, J. K., Rinnooy Kan, A. H. G. (1978), Complexity
of scheduling under precedence constraints, Opera-
tions Research, 26(1), 22-35.

Pirkul, H. (1987), Efficient algorithms for capacitated
concentrator location problem, computers and opera-
tions Research, 14(3), 197-208.

Sridharan, R. (1993), A Lagrangian heuristic for the capa-
citatedplant location problem with single source
constraints, European Journal of Operational Re-
search, 66(3), 305-312.

Sridharan R. (1995), The capacitated plant location prob-
lem, European Journal of Operational Research, 87
(2), 203-213.

Teitz, M. B. and Bart, P. (1968), Heuristic methods for
estimating the generalized vertex median of a wei-
ghted graph, Operations Research, 16(5), 955-961.

