DOI QR코드

DOI QR Code

Analysis of Bone Mineral Density and Related Factors after Pelvic Radiotherapy in Patients with Cervical Cancer

골반부 방사선 치료를 받은 자궁경부암 환자의 골밀도 변화와 관련 인자 분석

  • Yi, Sun-Shin (Department of Family Medicine, Kosin University College of Medicine) ;
  • Jeung, Tae-Sig (Department of Radiation Oncology, Kosin University College of Medicine)
  • 이순신 (고신대학교 의과대학 가정의학교실) ;
  • 정태식 (고신대학교 의과대학 방사선종양학교실)
  • Published : 2009.03.30

Abstract

Purpose: This study was designed to evaluate the effects on bone mineral density (BMD) and related factors according to the distance from the radiation field at different sites. This study was conducted on patients with uterine cervical cancer who received pelvic radiotherapy. Materials and Methods: We selected 96 patients with cervical cancer who underwent determination of BMD from November 2002 to December 2006 after pelvic radiotherapy at Kosin University Gospel Hospital. The T-score and Z-score for the first lumbar spine (L1), fourth lumbar spine (L4) and femur neck (F) were analyzed to determine the difference in BMD among the sites by the use of ANOVA and the post-hoc test. The study subjects were evaluated for age, body weight, body mass index (BMI), post-radiotherapy follow-up duration, intracavitary radiotherapy (ICR) and hormonal replacement therapy (HRT). Association between the characteristics of the study subjects and T-score for each site was evaluated by the use of Pearson's correlation and multiple regression analysis. Results: The average T-score for all ages was -1.94 for the L1, -0.42 for the L4 and -0.53 for the F. The average Z-score for all ages was -1.11 for the L1, -0.40 for the L4 and -0.48 for the F. The T-score and Z-score for the L4 and F were significantly different from the scores for the L1 (p<0.05). There was no significant difference between the L4 and F. Results for patients younger than 60 years were the same as for all ages. Age and ICR were negatively correlated and body weight and HRT were positively correlated with the T-score for all sites (p<0.05). BMI was positively correlated with the T-score for the L4 and F (p<0.05). Based on the use of multiple regression analysis, age was negatively associated with the T-score for the L1 and F and was positively correlated for the L4 (p<0.05). Body weight was positively associated with the T-score for all sites (p<0.05). ICR was negatively associated with the T-score for the L1 (p<0.05). HRT was positively associated with the T-score for the L4 and F (p<0.05). Conclusion: The T-score and Z-score for the L4 and F were significantly higher than the scores for the L1, a finding in contrast to some previous studies on normal women. It was thought that radiation could partly influence BMD because of a higher T-score and Z-score for sites around the radiotherapy field. We suggest that a further long-term study is necessary to determine the clinical significance of these findings, which will influence the diagnosis of osteoporosis based on BMD in patients with cervical cancer who have received radiotherapy.

목적: 골반부 방사선 치료를 받은 자궁경부암 환자에서 골밀도 검사 부위인 요추부위와 대퇴골 경부에서 방사선 치료 범위에 인접한 부위와 원격 부위의 골밀도 양상 및 골밀도 관련 인자와의 관련성을 알아보고자 하였다. 대상 및 방법: 고신대학교 복음병원 방사선 종양학과에서 골반부 방사선 치료를 받고 외래에서 추적 관찰하면서 2002년 11월부터 2006년 12월까지 골밀도 검사를 받은 자궁경부암 환자중 96명을 대상으로 제 1 요추부위, 제 4 요추부위와 대퇴골 경부 전체 부위에서 T-score와 Z-score를 조사하여 각 평균치가 각 부위별로 유의하게 차이가 있는지 분석하였다. 환자군의 특성과 관련하여 연령, 체중, 체질량 지수(BMI), 방사선 치료 종료 후 골밀도 검사일까지의 경과 기간, 자궁강내 근접치료(ICR) 추가 유무, 여성 호르몬 치료(HRT) 여부에 따른 T-score와의 관계를 각 부위별로 분석하였다. 결과: 전체 연령대의 각 부위별 T-score의 평균치는 제 1 요추부위가 -1.94, 제 4 요추부위가 -0.42, 대퇴골 경부 전체가 -0.53이었고 각 부위별 Z-score의 평균치는 제 1 요추부위가 -1.11, 제 4 요추부위가 -0.40, 대퇴골 경부 전체가 -0.48이었다. 제 4 요추부위 및 대퇴골 경부의 T-score와 Z-score는 제 1 요추부위와 유의한 차이를 보였으나(p<0.05), 제4요추부위와 대퇴골 경부사이에는 유의한 차이를 보이지 않았다. 60세 미만의 연령군에서도 같은 결과를 보였다. 각 부위별 T-score 모두에서 연령, ICR 여부 변수에 대해서 유의한 음의 상관 관계를 보였고(p<0.05), 체중, HRT 여부 변수에 대해서는 유의한 양의 상관 관계를 보였다(p<0.05). 체질량 지수에 대해서는 제 4 요추부위와 대퇴골 경부의 T-score와 유의한 양의 상관 관계를 보였다(p<0.05). 각 변수들이 각 부위별 T-score에 미치는 고유한 영향력을 알아보기 위한 다중 회귀 분석에서 연령은 제 1 요추부위와 대퇴골 경부의 T-score와 유의한 음의 연관을 보였으나(p<0.05) 제 4 요추부위와는 유의한 연관이 없었다. 체중은 각 부위 모두에서 T-score와 유의한 양의 연관을 보였다(p<0.05). ICR 여부 변수는 제 1 요추부위의 T-score와만 유의한 음의 연관을 보였다(p<0.05). HRT 여부 변수는 제 4 요추부위와 대퇴골 경부의 T-score와 유의한 양의 연관을 보였다(p<0.05). 결론: 본 연구에서는 제 4 요추부위와 대퇴골 경부의 T-score와 Z-score가 제 1 요추부위의 값보다 유의하게 높은 결과를 보였는데 일반인을 대상으로 한 일부 연구와는 다른 결과였다. 각 부위 간의 의미있는 차이에 대해서 노화나 다른 요인의 영향을 고려해 볼 수 있으며 방사선 치료 범위에 인접하거나 포함된 부위에서 더 높은 T-score와 Z-score를 보인 점에서 그 중 방사선의 영향도 부분적으로 작용하였을 것으로 생각된다. 방사선 치료 환자군의 골밀도 특성의 임상적인 의미에 대한 장기간의 추가적인 연구가 필요하며 이에 따라서 방사선 치료 환자에서 골밀도 검사에 의한 골다공증의 진단에 영향을 줄 수 있을 것으로 생각된다.

Keywords

References

  1. Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993;94:646-650 https://doi.org/10.1016/0002-9343(93)90218-E
  2. Chang JS. Senile musculoskeletal disorder. J Korean Med Assoc 2005;48:247-253 https://doi.org/10.5124/jkma.2005.48.3.247
  3. Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International society for clinical densitometry. J Clin Densitom 2004;7:1-6 https://doi.org/10.1385/JCD:7:1:1
  4. Williams HJ, Davies AM. The effect of X-rays on bone. Eur Radiol 2006;16:619-633 https://doi.org/10.1007/s00330-005-0010-7
  5. Nyaruba MM, Yamamoto I, Kimura H, Morita R. Bone fragility induced by X-ray irradiation in relation to cortical bone mineral content. Acta Radiol 1998;39:43-46 https://doi.org/10.1080/02841859809172147
  6. Khan FM. The physics of radiation therapy. 3rd ed. Philadelphia; Lippincott Williams and Wilkins, 2003:199-201
  7. Chen HH, Lee BF, Guo HR, Su WR, Chiu NT. Changes in bone mineral density of lumbar spine after pelvic radiotherapy. Radiother Oncol 2002;62:239-242 https://doi.org/10.1016/S0167-8140(02)00002-6
  8. Koh JM. Examples of osteoporosis diagnosis. J Korean Soc Osteoporos 2005;3(suppl 2):49-54
  9. Sahota O, Pearson D, Cawte SW, San P, Hosking DJ. Site-specific variation in the classification of osteoporosis and the diagnostic reclassification using the lowest individual lumbar vertebra T-score compared with the L1-L4 mean in early postmenopausal women. Osteoporos Int 2000;11:852-857 https://doi.org/10.1007/s001980070044
  10. Ryan PJ, Blake GM, Herd R, Parker J, Fogelman I. Distribution of bone mineral density in the lumbar spine in health and osteoporosis. Osteoporos Int 1994;4:67-71 https://doi.org/10.1007/BF01623225
  11. Yang SO. Importance and proper evaluation of osteoporotic fracture. J Korean Soc Osteoporos 2005;3(suppl 2):17-30
  12. Yu W, Glüer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 1995;57:169-174 https://doi.org/10.1007/BF00310253
  13. Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol 2003;41:208-211 https://doi.org/10.1002/mpo.10338
  14. Reinbold WD, Wannenmacher M, Hodapp N, Adler CP. Osteodensitometry of vertebral metastases after radiotherapy using quantitative computed tomography. Skeletal Radiol 1989;18:517-521 https://doi.org/10.1007/BF00351751
  15. Hamada K, Hon R, Shigekawa K, et al. The early changes in bone mineral metabolism due to radiation-measurement of bone mineral density in lumbar vertebra by quantitative computed tomography. Nippon Sanka Fujinka Gakkai Zasshi 1991;43:1-7
  16. Youn SM, Choi TJ, Koo ES, Kim OB, Lee SM, Suh SJ. Effect of pelvic irradiation on the bone mineral content of lumbar spine in cervical cancer. J Korean Soc Ther Radiol Oncol 1997;15:145-152
  17. Stutz JA, Barry BP, Maslanka W, Sokal M, Green DJ, Pearson D. Bone density: is it affected by orchidectomy and radiotherapy given for stage I seminoma of the testis? Clin Oncol 1998;10:44-49 https://doi.org/10.1016/S0936-6555(98)80113-1
  18. Mitchell MJ, Logan PM. Radiation-induced changes in bone. Radiographics 1998;18:1125-1136 https://doi.org/10.1148/radiographics.18.5.9747611
  19. Park JY. Exercise prescription for the prevention and treatment of osteoporosis. J Korean Med Assoc 2005;48:847-856 https://doi.org/10.5124/jkma.2005.48.9.847
  20. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312:1254-1259 https://doi.org/10.1136/bmj.312.7041.1254
  21. Han KO. Basic physiology of bone in understanding osteoporosis. J Korean Soc Osteoporos 2005;3(suppl 2):3-7
  22. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis Prevention, Diagnosis and Therapy. JAMA 2001;285:785-795 https://doi.org/10.1001/jama.285.6.785
  23. Nguyen T, Sambrook P, Kelly P, et al. Prediction of osteoporotic fractures by postural instability and bone density. BMJ 1993;307:1111-1115 https://doi.org/10.1136/bmj.307.6912.1111
  24. Tromp AM, Ooms ME, Popp-Snijders C, Roos JC, Lips P. Predictors of fractures in elderly women. Osteoporos Int 2000;11:134-140 https://doi.org/10.1007/PL00004174
  25. Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 2000;11:192-202 https://doi.org/10.1007/s001980050281
  26. Gillette-Guyonnet S, Nourhashemi F, Lauque S, Grandjean H, Vellas B. Body composition and osteoporosis in elderly women. Gerontology 2000;46:189-193 https://doi.org/10.1159/000022158
  27. Cauley JA, Robbins J, Chen Z, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the women's health initiative randomized trial. JAMA 2003;290:1729-1738 https://doi.org/10.1001/jama.290.13.1729