Roles of Fucoidan, an Anionic Sulfated Polysaccharide on BSA-Stabilized Oil-in-Water Emulsion

  • Kim, Do-Yeong (Food Chemistry Lab., Department of Food & Nutrition, College of Human Ecology, Hanyang University) ;
  • Shin, Weon-Sun (Food Chemistry Lab., Department of Food & Nutrition, College of Human Ecology, Hanyang University)
  • Published : 2009.02.25

Abstract

Fucoidan, a sulfated polysaccharide derived from brown seaweed, is an important material valued for its various biological functions, including anti-coagulation, anti-aging, and immune system support. In this study, we examined the potential of fucoidan as a novel emulsifying agent in BSA (bovine serum albumin)-stabilized emulsion at a neutral pH. We measured the dispersed oil-droplet size, surface zeta-potential and creaming formation of 0.5 wt% BSA emulsion (20 wt% oil traction) in the absence and presence of fucoidan. The average particle size and zeta-potential value were 625.4 nm and -30.91 mV in only BSA-stabilized emulsion and 745.2 nm and -44.2 mV in 1.0 wt% fucoidan-added BSA emulsion, respectively. This result suggested that some positive charges of the BSA molecules interacted with the negative charges of fucoidan to inhibit the flocculation among the oil droplets. The creaming rate calculated from the backscattering data measured by Turbiscan dramatically decreased in 1.0 wt% fucoidan-added BSA emulsion during storage. Accordingly, the repulsion forces induced among the oil particles coated with 1.0 wt% fucoidan in emulsion solution resulted in significantly increased emulsion stability. The turbidity of the BSA-stabilized emulsion at 500 nm decreased during five days of storage. However, the fucoidan-added BSA emulsion exhibited a higher value of turbidity than the BSA-stabilized emulsion did. In conclusion, an anionic sulfated fucoidan lowered the surface zeta-potential of BSA-coated oil droplets via the electrostatic interaction, and subsequently inhibited the flocculation among the oil droplets, thereby clearly minimizing the creaming and phase separation of the emulsion.

Keywords

References

  1. D. J. McClements, Food Emulsions: Principles, Practices, and Techniques, 2nd Edition, Boca Raton, Florida, CRC Press, 2004
  2. E. Dickinson, Food Hydrocolloid., 17, 25 (2003) https://doi.org/10.1016/S0268-005X(01)00120-5
  3. X. Huang, Y. Kakuda, and W. Cui, Food Hydrocolloid., 15, 533 (2001) https://doi.org/10.1016/S0268-005X(01)00091-1
  4. T. Nishino, H. Kiyohara, H. Yamada, and T. Nagumo, Phytochemistry, 30, 535 (1991) https://doi.org/10.1016/0031-9422(91)83722-W
  5. L.Chevolot, A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson Vidal, Carbohyd. Res., 319, 154 (1999) https://doi.org/10.1016/S0008-6215(99)00127-5
  6. J. A. Hemmingson, R. Falshaw, R. H. Furneaux, and K. Thompson, J. Appl. Phycol., 18, 185 (2006) https://doi.org/10.1007/s10811-006-9096-9
  7. C. Zhuang, H. Itoh, T. Mizuno, and H. Ito, Biosci. Biotechnol. Biochem., 59, 563 (1995) https://doi.org/10.1271/bbb.59.563
  8. S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Biochem. Pharmacol., 65, 173 (2003) https://doi.org/10.1016/S0006-2952(02)01478-8
  9. Q. B. Zhang, P. Z. Yu, and Tradit, Herbal Drugs, 34, 824 (2003)
  10. J. Wang, Q. Zhang, Z. Zhang, and Z. Li, Int. J. Biol. Macromol., 42, 127 (2008) https://doi.org/10.1016/j.ijbiomac.2007.10.003
  11. T. N. Zvyagintseva, N. M. Shevchenko, I. V. Nazarova, A. S. Scobun, P. A. Luk’anov, and L. A. Elyakova, Comp. Biochem. Phys. C, 126, 209 (2000)
  12. M. Tako, Bot. Mar., 46, 461 (2004)
  13. P. Faldt, B. Bergenstahl, and P. M. Claesson, Colloid Surface A, 71, 187 (1993) https://doi.org/10.1016/0927-7757(93)80343-D
  14. L. Moreau, H. J. Kim, E. A. Decker, and D. J. McClements, J. Agr. Food Chem., 51, 6612 (2003) https://doi.org/10.1021/jf034332+
  15. S. Ogawa, E. A. Decker, and D. J. McClements, J. Agr. Food Chem., 51, 2806 (2003) https://doi.org/10.1021/jf020590f
  16. S. Ogawa, E. A. Decker, and D. J. McClements, J. Agr. Food Chem., 51, 5522 (2003) https://doi.org/10.1021/jf026103d
  17. H. J. Kim, S. J. Choi, W. S. Shin, and T. W. Moon, J. Agr. Food Chem., 51, 1049 (2003) https://doi.org/10.1021/jf020698v
  18. S. Kentish, T. J. Wooster, M. Ashokkumar, S. Balachandran, R. Mawson, and L. Simons, Innovative Food Science & Emerging Technologies, 9, 170 (2007) https://doi.org/10.1016/j.ifset.2007.07.005
  19. B. Abismail, J. P. Canselier, A. M.Wilhelm, H. Delmas, and C. Gourdon, Ultrason. Sonochem., 6, 75 (1999) https://doi.org/10.1016/S1350-4177(98)00027-3
  20. K. N. Pearce and J. E. Kinsella, J. Agr. Food Chem., 26, 716 (1978) https://doi.org/10.1021/jf60217a041
  21. M. Liu and S. Damodaran, J. Agr. Food Chem., 47, 1514 (1999) https://doi.org/10.1021/jf981030c
  22. M. Qi, N. S. Hettiarachchy, and U. Kalapathy, J. Food Sci., 62, 1110 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb12224.x
  23. T. Harnsilawat, R. Pongsawatmanit, and D. J. McClements, J. Agr. Food Chem., 54, 5540 (2006) https://doi.org/10.1021/jf052860a