Polymer Inkjet Printing: Construction of Three-Dimensional Structures at Micro-Scale by Repeated Lamination

  • Yun, Yeon-Hee (Department of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Kim, Jae-Dong (Department of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Lee, Byung-Kook (Department of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Cho, Yong-Woo (Department of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Lee, Hee-Young (Medikan Inc.)
  • Published : 2009.03.25

Abstract

Solution-based, direct-write patterning by an automated, computer-controlled, inkjet technique is of particular interest in a wide variety of industrial fields. We report the construction of three-dimensional (3D), micro-patterned structures by polymer inkjet printing. A piezoelectric, drop-on-demand (DOD) inkjet printing system and a common polymer, PVA (poly(vinyl alcohol)), were explored for 3D construction. After a systematic preliminary study with different solvent systems, a mixture of water and DMSO was chosen as an appropriate solvent for PVA inks. The use of water as a single solvent resulted in frequent PVA clogging when the nozzles were undisturbed. Among the tested polymer ink compositions, the PVA inks in a water/DMSO mixture (4/1 v/v) with concentrations of 3 to 5 g/dL proved to be appropriate for piezoelectric DOD inkjet printing because they were well within the proper viscosity and surface tension range. When a dot was printed, the so-called 'coffee-ring effect' was significant, but its appearance was not prominent in line printing. The optimal polymer inkjet printing process was repeated slice after slice up to 200 times, which produced a well-defined, 3 D micro-patterned surface. The overall results implied that piezoelectric DOD polymer inkjet printing could be a powerful, solid-freeform, fabrication technology to create a controlled 3D architecture.

Keywords

References

  1. P. Calvert, Chem. Mater., 13, 3299 (2001) https://doi.org/10.1021/cm0101632
  2. B. J. de Gans, P. C. Duineveld, and U. S. Schubert, Adv. Mater., 16, 203 (2004) https://doi.org/10.1002/adma.200300385
  3. J. Sumerel, J. Lewis, A. Doraiswamy, L. F. Deravi, S. L. Sewell, A. E. Gerdon, D. W. Wright, and R. J. Narayan, Biotechnol. J., 1, 976 (2006) https://doi.org/10.1002/biot.200600123
  4. N.-B. Cho, T.-H. Lim, Y.-M. Jeon, and M.-S. Gong, Macromol. Res., 16, 149 (2008) https://doi.org/10.1007/BF03218844
  5. T. Shimoda, K. Morii, S. Shunichi, and H. Kiguchi, MRS Bull., 28, 821 (2003) https://doi.org/10.1557/mrs2003.231
  6. J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998) https://doi.org/10.1063/1.121090
  7. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000) https://doi.org/10.1126/science.290.5499.2123
  8. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films, 489, 279 (2003)
  9. S. E. Burns, P. Cain, J. Mills, J. Wang, and H. Sirringhaus, MRS Bull., 28, 829 (2003) https://doi.org/10.1557/mrs2003.232
  10. T. Boland, T. Xu, B. Damon, and X. Cui, Biotechnol. J., 1, 910 (2006) https://doi.org/10.1002/biot.200600081
  11. E. A. Roth, T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland, Biomaterials, 25, 3707 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.052
  12. W. C. Wilson Jr. and T. Boland, Anat. Rec. Part A, 272A, 491 (2003) https://doi.org/10.1002/ar.a.10057
  13. N. E. Sanjana and S. B. Fuller, J. Neurosci. Methods, 136, 151 (2004) https://doi.org/10.1016/j.jneumeth.2004.01.011
  14. A. Bietsch, M. Hegner, H. P. Lang, and C. Gerber, Langmuir, 20, 5119 (2004) https://doi.org/10.1021/la049621m
  15. F. G. Zaugg and P. Wagner, MRS Bull., 28, 837 (2003) https://doi.org/10.1557/mrs2003.233
  16. A. Mandavilli, Nature, 442, 862 (2006) https://doi.org/10.1038/442862a
  17. H. P. Le, J. Imaging Sci. Technol., 42, 49 (1998)
  18. J. Brünahl and A. M. Grishij, Sens. Actuat. A, 101, 371 (2002) https://doi.org/10.1016/S0924-4247(02)00212-1
  19. B. J. de Gans and U. C. Schubert, Macromol. Rapid Commun., 24, 659 (2003) https://doi.org/10.1002/marc.200350010
  20. O. Ngamna, A. Morrin, A. J. Killard, S. E. Moulton, M. R. Smyth, and G. G. Wallace, Langmuir, 23, 8569 (2007) https://doi.org/10.1021/la700540g
  21. B. J. de Gans, E. Kazancioglu, W. Meyer, and U. S. Schubert, Macromol. Rapid Commun., 25, 292 (2004) https://doi.org/10.1002/marc.200300148
  22. J. Park and J. Moon, Langmuir, 22, 3506 (2006) https://doi.org/10.1021/la053450j
  23. D. Wang, M. Park, J. Park, and J. Moon, Appl. Phys. Lett., 86, 241114 (2005) https://doi.org/10.1063/1.1949279
  24. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E, 62, 756 (2000) https://doi.org/10.1103/PhysRevE.62.756
  25. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature, 389, 827 (1997) https://doi.org/10.1038/39827
  26. D. Soltman and V. Subramanian, Langmuir, 24, 2224 (2007)
  27. Y. Socol and I. S. Guzman, J. Phys. Chem. B, 110, 18347 (2006) https://doi.org/10.1021/jp0637577
  28. R. D. Deegan, Phys. Rev. E, 61, 475 (2000) https://doi.org/10.1103/PhysRevE.61.475