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SPATIALLY HOMOGENEOUS GLOBAL PRICE DYNAMICS
ON A CHAIN OF LOCAL MARKETS

Yong-IN KiMm

ABSTRACT. The main purpose of this paper is to use the methods of Lattice Dynam-
ical System to establish a global model, which extends the Walrasian evolutionary
cobweb model in an independent single local market to the global market evolu-
tion over an infinite chain of many local markets interacting each other through a
diffusion of prices between them.

For brevity of the model, we assume linear decreasing demands and quadratic
supplies with naive predictors, and investigate the spatially homogeneous global
price dynamics and show that the dynamics is topologically conjugate to that of
well-known logistic map and hence undergoes a period-doubling bifurcation route
to chaos as a parameter varies through a critical value.

1. INTRODUCTION

In this paper, we try to establish a global model for the global market which
consists of many local markets located continually along a long chain by applying
the theory and methods of Lattice Dynamical Systems (LDS) and investigate the
dynamics of the spatially homogeneous solutions of the resulting global model. We
assume that the local markets are located along an infinitely long 1D chain and
there is an interaction between them through diffusion of prices of neighboring local
markets. The actual examples of this kind of model can be easily found, for example,
in the local fish markets distributed along a long coastline, say, that of the Korean
peninsula.

Although the number of local fish markets along the coastline is finite, it is more
convenient to assume that it is infinite in the case of non-circular coastline, since we
want the rightmost or leftmost site to still have an interaction between neighboring

sites and also it is a little awkward to impose a boundary condition to the rightmost
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or leftmost site. The local fish markets located in the inland area, of course, may
be assumed to be disregarded in this model.

However, in the case of circular coastline, for example, the Australian coastline,
it will be reasonable to assume that the number of local markets is finite and they
satisfy a periodic boundary condition. Hence, in the case of infinitely long chain, we
need only to assume that the prices are positive and finite at oo for all times.

As a matter of fact, the price of each local market is affected by the prices of
the neighboring local markets. In our everyday life, we frequently notice that if the
prices of some good in the neighboring sites are higher {or lower) than the price at
our local site, then the price of the good at our site also gradually gets higher (or
lower) until those prices make balance among the sites.

On the other hand, the endogenous price dynamics what is called Walrasian dy-
namics also exists internally at each local markets. It depends on the consumer’s de-
mand and the producer’s supply which is based on some mechanism of expectations
for the tomorrow’s price of a good and some optimization process to maximize profit
or minimize cost for the production of the good. On the problems of various methods
of expectations, there have been existing a lot of researches, say, backward-looking
expectations ([17]), adaptive learning methods ([17]), fading memory learning ([2}),
and so on. About the local market Walrasian dynamics of cobweb type, there also
have been a great deal of researches, say, Brock and Hommes ([6],[7]), Goeree and
Hommes ([16]), B6hm and Chiarella ([5]), and Chiarella et al. ([11], [12], {13]) and
SO on.

As is noticed, most of the above researches are confined in a single independent
local market, say, agricultural market or financial market, and are concentrated on
developing the appropriate methods for the prediction of the price or on describing
the time evolution of the local market dynamics which is resulted from the interaction
between endogenous variables, say, price and fractions of agents with heterogeneous
beliefs ([6]), old and new generations in stock markets ([4]), fundamentalists and
chartists ({18]) and so on.

In fact, there have been some researches which dealt with several local markets
and considered the resulting global dynamics. For instance, Beckmann and Puu ([3])
have considered the interaction between a finite number of local markets which are
located on a plane and studied the continuous commodity flow fields among them
by using the physical concepts such as divergence, gradient etc in vector analysis.
Hence, this model is different from our lattice dynamical system. Choudhary and
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Orszag([14]) have considered a circular lattice model with the effects of the nearest
neighbors. In the area of physics, we can find easily some chain or lattice models
which are discrete versions of continuous time models, e.g., a discrete version of
reaction-diffusion equations ([1]). There is another similar model called Ising model
([20]). This Ising model was invented to describe the phase transition in magnetism
or in gas-liquid and each site can have two values 1 or 0, and so can be viewed as
a cellular automation which is a special case of LDS with discrete state values, and
hence, needless to say, cannot be regarded as economic models with continuous state
values. Thus, it seems to us that our paper considering the global market dynamics
on a chain of interacting local markets might be one of a few attempts in the field
of economic dynamics.

Now, we briefly mention about the contents of this paper. In Section 2, we briefly
describe the Cobweb model for the local market dynamics. In Section 3, we intro-
duce the LDS model for the global market dynamics, and under the assumption
of homogeneous beliefs of producers, we establish our global market model by con-
necting the LDS model and Cobweb model. In Section 4, we investigate the global
market dynamics by examining the spatially homogeneous solutions. The proofs of

the theorems will be given in the Appendix. In Section 5, we make a concluding
remark.

2. THE LocAL MARKET DyNAMICS — THE COBWEB MODEL

The Cobweb model for the local market dynamics has been well introduced and
studied by many researchers (e.g., [6], [7], [8], [14]). The Cobweb model describes
the dynamics of equilibrium prices in a single independent local market for a non-
storable good, that takes one time period to produce, so that producers must form
price expectations one period ahead using the past history of prices.

Let p¢ = H(P,_1), where p, is the expected price by the producers at time n
and P,_1 = (Pn_1,Pn—2," " ,Pn—L) is a vector of past prices of lag-length L and
H(-) : Rl = R is a real-valued function, so called predictor. Let p, be the actual
market price at time n by the consumers, and let D(p,) be the consumer demand
and S(p¢) be the producer supply for the goods. The supply S(p},) is derived from

producer’s maximizing expected profit with a cost function c(q), i.e.,
(21) S(5) = argmax{pian — clan)}

The demand function D(-) depends on the current market price p, and is assumed
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to be strictly decreasing in the price p, to ensure that its inverse D! is well-defined.
The supply function S(-) depends on the expected price pf and will be assumed to
be quadratic in our paper. The intersection point p* of the demand and supply
curve such that D(p*) = S(p*) is called the steady state equilibrium price.

If the beliefs of producers are homogeneous, i.e., all producers use the same
predictor H, then the market equilibrium price dynamics in the cobweb model is
described by

(2.2) D(pn) = S(H(Pn-1)), o1, pa=D"'S(H(Pn-1)))

Thus, the actual equilibrium price dynamics in a local market depends on the
demand D, the supply S, and the predictor H used by the producers.

3. THE GLOBAL MARKET DYNAMICS — THE LDS MODEL

Over the last decade, a new class of infinite dimensional dynamical systems, so
called Lattice Dynamical Systems(LDS) have been introduced and studied by many
researchers (e.g., [1], [9], [10]). These LDS’s have been proved to be one of the most
eflicient tools to analyze space-time behaviors of the extended systems.

To begin with, we define the phase space (or state space) of the LDS. Suppose
that at each site j of a d-dimensional lattice Z¢, we have a finite dimensiona] local
dynamical system which is defined by some map f; : M; — M;, where M; is a
local phase space at the site 7. For simplicity and applicability to our model, we
will confine our attention to an infinite chain (d = 1) and the identical local map,
ie., fj = f,M; = R'Vj € Z, where R! is a 1-dimensional real Euclidean space with

ordinary inner product (-,-) and the norm |- | = v/(;,-). Then we have an infinite
dimensional dynamical system on a space
(3.1) M =[] M; = {p = {p;}lp; €R,j € Z}

JEZ

where M is obviously a linear space with respect to componentwise addition and
scalar multiplication. A point (or, a state) p = {p;} € M can be thought of as a
bi-infinite sequence of real numbers. To make the linear space M be a Hilbert space,
we equip M with the inner product defined by

(3.2) (p,q)p=zg%j—) Vp,q € M,

JEZ
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where p > 1 is some fixed number depending on the particular problem. Then the

norm || - ||, is induced by

1o =1/C)0
and now we can define the phase space of our LDS by
(3.3) B, = {p € M| |pll, < oo}.

Then it can be easily shown that B, is a Hilbert space (e.g., [1]). Next, we define

the evolution operator on B, in the following.

Definition 3.1. Define the evolution operator ® : B, — B, by

(3.4) (®p); = F({p;}*),Vj € Z,
where {p;}° = {pi|]i — j| < s, s > 1 integer} for each j € Z, i.e., {p;}’ is the set of

values p; at the site 1 which are within the distance of radius s from the site j, and
F:R?»*! - R is a differentiable map of class C? such that

OF O*F
p; OpiOpk

for any collection {p;}° and some constant K > 0.

(3.5)

Then it is easy to verify that under the condition (3.5), ®(B,) C B, and ® is
Lipschitz continuous with the constant L = K(2s + 1)%,0% (e.g., [1])-

Definition 3.2. Given a state p(n) = {p;(n)}72_., € B, at the moment n, we can
obtain via (3.4) the next state p(n + 1), that is,

p(n+1) = &(p(n)), or,

pi(n+1) = (2(p(n))); = F({p;(n)}°).
The dynamical system (®", B,),cz+ is called a Lattice Dynamical System (LDS).

(3.6)

Formula (3.6) implies that given a state p(n) € B,, we can calculate its next state

p(n + 1), so we can obtain the forward orbit of the evolution operator @, ie.,

p(0),p(1) = &(p(0)),p(2) = &(p(1)) = *(p(0)), - -
Before ending this section, let us consider several kinds of basic motions (or
solutions) in the LDS (3.6).

Definition 3.3. (i) A state (or solution) p(n) = {p;(n)} for the LDS (3.6) is spatially
homogeneous if p;(n) = ¢(n)Vj € Z, i.e., a spatially homogeneous solution {¥(n)}
does not depend on the space coordinates j and so has the same value at each site
7.



248 YonGg-IN KiM

(ii) A solution p(n) = {p;(n)} is static (or stationary, steady state,standing wave) if
pj(n) = ¢;Vn € Z*, i.e., a static solution {¢;} does not depend on time n, and is
standing there along the space coordinates j at all times n.

(iii) A solution p(n) = {p;(n)} is a traveling wave with wave velocity m/l if p;(n) =
£(lj + mn), where [ > 0,m € Z and (I,m) = 1(i.e.,relatively prime). Here, the ratio
m/l is called the wave velocity of the traveling wave.

For instance, suppose that the local system f : M; — M, has a fixed point p*.
Then the state p = {p;},p; = p*Vj € Z is a spatially homogeneous static solution,
i.e., a fixed point of the evolution map ® and also can be thought of as a travelling
wave with arbitrary velocity.

Now, as our LDS model for the global market dynamics, we will take the following

form:
pj(n+1) = (2(p(n)));

3.7
(37) = (1 — a)pj(n) + af(p;(n)) + e(pj-1(n) — 2p;(n) + pjs1(n)),

where a solution p;(n), j € Z, n € Z* represents the price of a good at the site
(or local market)j at the time n, and f : R — R is a Walrasian local market price
dynamics at each site j, and « € [0,1] is a parameter denoting the weighted average
between p;(n) and f(p;(n)), and the parameter € is a diffusion coefficient measuring
the intensity of interaction between the neighboring local markets. Thus, in this
global market model, the price pj(n+ 1) at site j and at time n+ 1 is determined by
several factors, i.e., the previous price p;(n), the local market dynamics f, the weight
o € [0,1] of the average between them, and the diffusion coefficient ¢ > 0. Notice
that the parameter « plays a role of controlling each local market in such a way
that if @ = 1 then p;(n + 1) is determined completely by the local market dynamics
f together with diffusion term and if @ = 0 then the local market dynamics is
suppressed completely and p;(n-+1) depends only on the present price and diffusion

term.

Remark 3.4. For a solution p;(n) of our model (3.7) to have a meaning in economic
sense, we impose a boundary condition at infinity that p;(n) must be bounded,i.e.,
Ipj(n)] < CVj€Z,neZt for some C > 0. Also, we require that a solution p;(n)
must have nonnegative value for all j € Z, n € Z*. If a solution of (3.7) does not
satisfy these conditions, then it would not be an admissible solution for our model.

Remark 3.5. Besides the solutions given in the Definition 3.3, there can also be
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many other solutions, e.g., spatially and/or temporally periodic solutions, spatially
and/or temporally chaotic bounded solutions, and so on. In this paper, we restrict
our attention only to those periodic solutions or bounded chaotic solutions which
are the basic solutions mentioned in the Definition 3.3, e.g., spatially periodic static
solutions, temporally periodic spatially homogeneous solutions, spatially and tem-

porally periodic traveling wave solutions, etc.

4. GLOBAL PRICE DYNAMICS

We assume that the predictor H is naive, the demand D is linear decreasing, and

the supply S is quadratic, that is, they are given by
pp = H(Pp_1) =pn-1, D(pn) =1-pn,
S(P5) = S(pn-1) = 4pn-1(1 — pn-1),
respectively. Note that the price p, in (4.1) is a scaled price such that 0 < p, <1,

(4.1)

and the quadratic supply function S(z) = 4z(1—=z) is a so called logistic map, which
is known to exhibit chaotic dynamics on the whole interval [0,1] (e.g., [15]). This
kind of non-monotonic supply curve can be justified in an actual market, e.g., by an
income effect in an agricultural market (e.g., [17], pp 339). This income effect, of
course, may be applied to our fish market as well. In other words, as prices of fish
are getting higher, the income of fishermen is getting higher, and so after arriving at
a peak point, the production of fish might be getting less due to their taking more
leisure time.

Now, with these choices of H, D, and S, the local market equilibrium price
dynamics, D(p,) = S(p%), is given by

1—pp = 4pn-1(1 = pp-1), or,
P = 1 —4pn_1(1 — pa_1).

Hence, our local market dynamics f for the global market model (3.7) is given by

(4.3) flz)=1—-42(1—2z) = (1-2z)%

(4.2)

The map f has two fixed points, one at p* = % where f/'(p*) = —2 < —1, and
the other at ¢* = 1 where f'(¢*) = 4 > 1, and so both fixed points are repellors.
Note that at p* = %, D(%) =8 (%) = %, and prices near p* diverges in an oscillatory
way from p*, while at ¢* = 1, D(1) = S(1) = 0, and prices near and less than
q* decreases in a monotone way from ¢* and so prices fluctuate between these two

repellors p* and ¢* in a chaotic way as is shown in Figure 1.
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Figure 1. For an arbitrarily given initial point 0.2, (a) Time Series
plot of f. Apparently, the dynamics of f is chaotic on the whole
interval [0,1]. (b) The Lyapunov number of f. This graph indicates
that the orbit starting at 0.2 is chaotic, as its Lyapunov number is
clearly greater than 1.

Now, let us consider the global market dynamics (3.7), where the local market
dynamics f is given by (4.3), i.e.,

(44) pj(n+1) = (1 - a)p;j(n) + a{l - 2p;(n)}* + e{pj—1(n) — 2p;(n) + pj+1(n)}.
Hereafter, we will slightly loosen our restriction 0 < p;j(n) < 1 so that p;(n) > 0
because interesting dynamics can occur for p;(n) > 1 in the global market dynamics.
To avoid making our paper too lengthy, we will restrict our attention only to the
spatially homogeneous solutions of (4.4) in this paper. Other solutions such as static
solutions or traveling wave solutions will be considered later in another paper.

To obtain the spatially homogeneous solutions, we set p;(n) = 1 (n) in (4.4), then

we have

(4.5) P(n+1) = (1-a)yp(n) +a{l - 29(n)}?, ¢(n)20.
Equation (4.5) is a 1st order nonlinear difference equation and writing ¥(n) = z,

its dynamics can be described by a 1D quadratic map F, : R* — R* given by
(4.6) Folz)=(1-a)z+a(l—2z)2 z>0, acl0,1]

If 0 < o < 1, the map Fyo(z) has two fixed points z} = 1 and z} = 1, which are the
same as the fixed points of the local market dynamics f. If @ = 0, Fy(x) becomes
the identity map F,(z) = z, and so any point zg > 0 is a fixed point of Fy(z). If
a =1, then Fy(z) reduces to F,(z) = (1 — 2x)% = f(z), i.e., is coincident with the
local market dynamics f, and so obviously chaotic on the interval 0 < z < 1. Hence,
we assume that 0 < a < 1 from now on. Since Fj(1) = 1-3a and Fj,(1) = 1430, it
follows that the fixed point z} = % is asymptotically stable for 0 < o < %, unstable
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for % < a < 1, and has a non-hyperbolic eigenvalue —1 for o = %; while the fixed
point x5 = 1 is unstable for all 0 < @ < 1. From this, we can expect that as the
values of the parameter a vary from 0 to 1, the map F,(z) undergoes a cascade
of period-doubling bifurcation starting at o = %, and becomes chaotic right after
this cascade and ends up with chaotic motion spread out over the whole interval

0 <z <1ata=1. Now we show in the below that this is indeed the case.

Lemma 4.1. The map Fy(z) given by (4.6) on [0,1] is topologically conjugate to
the quadratic map defined by Qu(x) = pa(l — z) on [0,1] via the homeomorphism
h(z) = 47"‘(1 — ), with the relationship p = 3a + 1 between the parameters.

Note that Fn(z) with o = 1 is conjugate to the map Q(z) with u = 4, via
h(z) = 1 — z, which is coincident with the supply function S(z). The bifurcation
diagrams for F, and @, is shown in the Figure 2 below.

(a) Fq

Figure 2. (a) The bifurcation diagram for F,. (b) the same diagram
for Q.. The conjugacy between them is obvious. Note that the param-
eter values o = 2 in (a) and p = 3 in (b) at which period-doubling
bifurcation starts correspond to each other.

Hence, according to the Lemma 4.1, the dynamics of F,(z) as « varies is the same
as the dynamics of Q,(z) as u changes and so can be obtained from the well-known
results about the dynamics of Q,(z) through the relationship 4 = 3o + 1. Now we

restate the dynamics of F,, in terms of the spatially homogeneous solutions in the
below:

Theorem 4.2. (i) If 0 < a < 1, the static spatially homogeneous solution p(n) =
{(n)}jez = {%}jez of the evolution operator ®, : B, — B, undergoes a period-
doubling bifurcation route to chaos. That is, for 0 < a < %, &, has an attracting
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fized point {(n)} = {3} and then the cascade of period-doubling bifurcation begins
at o = % and ends at o = 0.8566. For ay < a < 1, the orbit of a spatially
homogeneous solution under @, exhibits chaotic behavior in the infinite strip I =
[0,1)%.

(ii) If a = 1, this chaotic motion spreads out over the whole strip I. Orbits starting
outside this strip I become unbounded as n — +oo.

(il) If a = 0, then ®, has no dynamics, i.e., any spatially homogeneous solution is
a fixed point of ®,. '

Therefore, according to Theorem 4.2, the bounded spatially homogeneous solu-
tions are as follows:
(i) the static spatially homogeneous solutions, i.e., {¥(n)} = {1} and {(n)} =
{1} for 0 < @ < 1, and {¥(n)} = {¥(0)} for a = 0.
(ii) the infinitely many temporally-periodic spatially homogeneous solutions
with any period created through the period-doubling bifurcation.
(iii) the bounded temporally-chaotic spatially homogeneous solutions created

right after the period-doubling bifurcation.

5. CONCLUDING REMARKS

In Section 4, we have noticed that bounded spatially homogeneous solutions do
exist and are directly affected by the local market dynamics because of the non-
presence of the diffusion. Furthermore, even if the local market dynamics is unstable,
the spatially homogeneous solutions of the global market can be controlled via mar-
ket control parameter o, so that it can converge to the static spatially homogeneous
solutions corresponding to the fixed points of the local market dynamics.

APPENDIX

Proof of Lemma 4.1. By using the relationship u = 3a + 1, we can immediately
check that the commutativity relation h o Fi,(z) = Q, o h(x) holds. O

Proof of Theorem 4.2. Tt has already been a well known fact that the quadratic
family @, (z) undergoes a period-doubling bifurcation route to chaos (e.g., [15], [21]).
Stating more specifically, let 3 = 3 < g = 1 4+v6 < -+ < gy < --- be the
parameter values of u for which @, has an orbit of period-2, period-4, - - -, period-2",
-+, respectively. The limiting parameter value is known to be po = 3.5699456. As



SPATIALLY HOMOGENEOUS GLOBAL PRICE DYNAMICS 253

p varies from 1 to 4, the fixed point p, = 'L%l of @, is attracting for 1 < pu < p; =3
and has eigenvalue —1 at g = p;. For g > puq, the fixed point becomes repelling
and a new attracting period-2 orbit is created. At p = g, the period-2 orbit has
eigenvalue —1 and for u > u9, the period-2 orbit becomes repelling and a new
attracting period-4 orbit is created. This process repeats itself; at u = p,, the
period-2" orbit begins to be created, and it is attracting for pu, < g < pp41 and
becomes repelling for p > pnyq.

Now the dynamics of @, is converted to that of F, in a one to one way via the

relation 1 = 3a + 1. That is, the sequence of parameter values p; = 3, up = 1 +

VB, thoo = 3.5699 correspond to the sequence of parameter values o) = %, Qg =

@,--- yOco = 0.8566 respectively and u = 1,u = 4 correspond to « = 0, ¢ = 1

respectively. From the dynamics of F,, the dynamics of spatially homogeneous

solutions follow immediately. O
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