DOI QR코드

DOI QR Code

Biological Control of Strawberry Fusarium Wilt Caused by Fusarium oxysporum f. sp.fragariae Using Bacillus velezensis BS87 and RK1 Formulation

  • Published : 2009.05.31

Abstract

Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was $10^5$ and $10^6$ colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulations of B. velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

Keywords

References

  1. Alabouvette, C., B. Schippers, P. Lemanceau, and P. A. H. M. Bakker. 1998. Biological control of Fusarium wilts, pp. 15-36. In G. J. Boland and L. D. Kuykendall (eds.), Plant-Microbe Interactions and Biological Control. Marcel Dekker Inc., New York, U.S.A
  2. Anonymous. 2007. 2006 Vegetable Production Results. Ministry of Agriculture and Forestry of Korea
  3. Cho, C. T. and B. J. Moon. 1984. Studies on the wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae in Korea. Korean J. Plant Protect. 23: 74-81
  4. Chun, J. 2001. PHYDIT version 3.1 (http://plasa.snu.ac.kr/ ~jchun/phydit/)
  5. Chun, J. S. and K. S. Bae. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78: 123-127 https://doi.org/10.1023/A:1026555830014
  6. Cook, R. J. and K. F. Baker. 1983. The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, MN, U.S.A
  7. Correll, J. C., C. J. R. Klittich, and J. F. Leslie. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77: 1640-1646 https://doi.org/10.1094/Phyto-77-1640
  8. Datnoff, L. E., S. Nemec, and K. Pernezny. 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Contr. 5: 427-431 https://doi.org/10.1006/bcon.1995.1051
  9. de Boer, M., P. Bom, F. Kindt, J. J. B. Keurentjes, I. van der Sluis, L. C. van Loon, and P. A. H. M. Bakker. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626-632 https://doi.org/10.1094/PHYTO.2003.93.5.626
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  11. Fravel, D. R., C. Olivain, and C. Alabouvette. 2003. Fusarium oxysporum and its biocontrol. New Phytol. 157: 493-502 https://doi.org/10.1046/j.1469-8137.2003.00700.x
  12. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  13. Govan, J. R. W., J. Balandreau, and P. Vandamme. 2000. Burkholderia cepacia - friend and foe. Am. Soc. Microbiol. News 66: 124-125
  14. Horimoto, K. 1993. Biological control of Fusarium wilt of strawberry by non-pathogenic Fusarium and bacteria associated with the mycelia. Ann. Phytopathol. Soc. Japan 59: 278
  15. Kim, C. H., H. D. Seo, W. D. Cho, and S. B. Kim. 1982. Studies on varietal resistance and chemical control to the wilt of strawberry caused by Fusarium oxysporum. Korean J. Plant Protect. 21: 61-67
  16. Kim, S. B., C. Falconer, E. Williams, and M. Goodfellow. 1998. Streptomyces thermonocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int. J. Syst. Bacteriol. 48: 59-68
  17. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Molec. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  18. Kloepper, J. W. 1993. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In F. B. Metting Jr. (ed.), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, U.S.A
  19. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrant and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons Ltd., Chichester, United Kingdom
  20. Mahenthiralingam, E., J. Bischof, S. K. Byrne, C. Radomski, J. E. Davies, Y. Av-Gay, and P. Vandamme. 2000. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and burkholderia cepacia genomovars I and III. J.Clin. Microbiol. 38: 3165-3173
  21. Matuo, T., H. Komada, and A. Matsuda. 1980. Fusarium Disease of Cultivated Plants. Zenkoku Noson Kyoiku Kyokai publishing Co., Ltd., Tokyo, Japan
  22. Moon, B. J., H. S. Chung, and H. C. Park. 1995. Studies on antagonism of Trichoderma species to Fusarium oxysporum f. sp. fragariae. V. Biological control of Fusarium wilt of strawberry by a mycoparasite, Trichoderma harzianum. Korean J. Plant Pathol. 11: 298-303
  23. Nam, M. H., S. K. Jung, N. G. Kim, S. J. Yoo, and H. G. Kim. 2005. Resistance analysis of cultivars and occurrence survey of Fusarium wilt on strawberry. Res. Plant Dis. 11: 35-38 https://doi.org/10.5423/RPD.2005.11.1.035
  24. Nelson, L. M. 2004. Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. [Online.] Crop Management. doi:10.1094/CM-2004-0301-05-RV
  25. Parke, J. L. and D. Gurian-Sherman. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. of Phytopathol. 39: 225-258 https://doi.org/10.1146/annurev.phyto.39.1.225
  26. Reid, T. C., M. K. Hausbeck, and K. Kizilkaya. 2002. Use of fungicides and biological controls in the suppression of Fusarium crown and root rot of asparagus under greenhouse and growth chamber conditions. Plant Dis. 86: 493-498 https://doi.org/10.1094/PDIS.2002.86.5.493
  27. Ruiz-Garcia, C., V. Bejar, F. Martinez-Checa, I. Llamas, and E. Quesada. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the River Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195 https://doi.org/10.1099/ijs.0.63310-0
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining methods A new method for reconstruction of phylogenetic trees. Molec. Biol. Evol. 4: 406-425
  29. Schaad, N. W., J. B. Jones, and W. Chun. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd Ed. APS Press, St. Paul, MN, U.S.A
  30. Schisler, D. A., N. I. Khan, M. J. Boehm, and P. J. Slininger. 2002. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant Dis. 86:1350-1356 https://doi.org/10.1094/PDIS.2002.86.12.1350
  31. Schisler, D. A., P. J. Slininger, R. W. Behle, and M. A. Jackson. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94: 1267-1271 https://doi.org/10.1094/PHYTO.2004.94.11.1267
  32. Slininger, P. J., D. A. Schisler, and R. J. Bothast. 1994. Twodimensional liquid culture focusing: A method of selecting commercially promising microbial isolates with demonstrated biological control capability, pp. 29-32. In M. H. Ryder, P. M. Stephens, and G. D. Bowen (eds.), Improving Plant Productivity with Rhizosphere Bacteria, 3rd International Workshop on Plant Growth-Promoting Rhizobacteria (PGPR), Adelaide, S. Australia
  33. Tezuka, N. and T. Makino. 1991. Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry. Ann. Phytopathol. Soc. Japan 57: 506-511 https://doi.org/10.3186/jjphytopath.57.506

Cited by

  1. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases vol.32, pp.4, 2009, https://doi.org/10.1038/aps.2011.10
  2. 감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명 vol.40, pp.2, 2009, https://doi.org/10.4489/kjm.2012.40.2.118
  3. 전통재래 간장으로부터 항진균 활성 B. velezensis SSH100-10의 분리와 그 항진균 물질의 특성 구명 vol.19, pp.5, 2009, https://doi.org/10.11002/kjfp.2012.19.5.757
  4. Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway vol.406, pp.1, 2009, https://doi.org/10.1007/s11010-015-2429-8
  5. Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides vol.6, pp.1, 2009, https://doi.org/10.3390/jfb6010033
  6. Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi vol.33, pp.5, 2009, https://doi.org/10.5423/ppj.oa.04.2017.0073
  7. Differential Inhibitory Activities of Four Plant Essential Oils on In Vitro Growth of Fusarium oxysporum f. sp. fragariae Causing Fusarium Wilt in Strawberry Plants vol.33, pp.6, 2009, https://doi.org/10.5423/ppj.oa.06.2017.0133
  8. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry vol.102, pp.13, 2009, https://doi.org/10.1007/s00253-018-9013-6
  9. Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis vol.13, pp.3, 2009, https://doi.org/10.1021/acschembio.7b00874
  10. Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina vol.46, pp.1, 2009, https://doi.org/10.1080/12298093.2018.1454011
  11. Bacillus velezensis as antagonist towards Penicillium roqueforti s.l. in silage: in vitro and in vivo evaluation vol.125, pp.4, 2009, https://doi.org/10.1111/jam.13944
  12. 버섯재배 배지재료용 수입 농업부산물에서의 세균 조사 연구 vol.54, pp.4, 2009, https://doi.org/10.7845/kjm.2018.8086
  13. A scientometric analysis on WoS reports to evaluate the research on Fusarium oxysporum since 2009 vol.52, pp.7, 2009, https://doi.org/10.1080/03235408.2018.1564429
  14. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation vol.103, pp.9, 2019, https://doi.org/10.1007/s00253-019-09710-5
  15. Crosstalk between chitosan and cell signaling pathways vol.76, pp.14, 2019, https://doi.org/10.1007/s00018-019-03107-3
  16. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize vol.128, pp.1, 2009, https://doi.org/10.1111/jam.14459
  17. Evaluation of fungicides sensitivities of Strawberry wilt disease pathogen, Fusarium oxysporum f sp. fragariae vol.24, pp.1, 2009, https://doi.org/10.7585/kjps.2020.24.1.34
  18. Strawberries at the Crossroads: Management of Soilborne Diseases in California Without Methyl Bromide vol.110, pp.5, 2009, https://doi.org/10.1094/phyto-11-19-0406-ia
  19. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses vol.10, pp.3, 2009, https://doi.org/10.1002/mbo3.1192
  20. Bacillus amyloliquefaciens strains control strawberry anthracnose through antagonistic activity and plant immune response intensification vol.157, pp.None, 2009, https://doi.org/10.1016/j.biocontrol.2021.104592
  21. Effects of plant probiotic bacteria and herbivore-induced plant volatiles on life table parameters of Tetranychus urticae (Acari: Tetranychidae) on kidney bean’s attached leaves vol.47, pp.6, 2009, https://doi.org/10.1080/01647954.2021.1957012
  22. A Potential Application of Endophytic Bacteria in Strawberry Production vol.7, pp.11, 2021, https://doi.org/10.3390/horticulturae7110504