DOI QR코드

DOI QR Code

Spore Display Using Bacillus thuringiensis Exosporium Protein InhA

  • Park, Tae-Jung (Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST) ;
  • Choi, Soo-Keun (National Laboratory for Microbial Display, GenoFocus) ;
  • Jung, Heung-Chae (National Laboratory for Microbial Display, GenoFocus) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST) ;
  • Pan, Jae-Gu (National Laboratory for Microbial Display, GenoFocus)
  • Published : 2009.05.31

Abstract

A new spore display method is presented that enables recombinant proteins to be displayed on the surface of Bacillus spores via fusion with InhA, an exosporium component of Bacillus thuringiensis. The green fluorescent protein and $\beta$-galactosidase as model proteins were fused to the C-terminal region of InhA, respectively. The surface expression of the proteins on the spores was confirmed by flow cytometry, confocal laser scanning microscopy, measurement of the enzyme activity, and an immunogold electron microscopy analysis. InhA-mediated anchoring of foreign proteins in the exosporium of Bacillus spores can provide a new method of microbial display, thereby broadening the potential for novel applications of microbial display.

Keywords

References

  1. Arnold, F. H. and A. A. Volkov. 1999. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54-59 https://doi.org/10.1016/S1367-5931(99)80010-6
  2. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553
  3. Charlton, S., A. J. Moir, L. Baillie, and A. Moir. 1999. Characterization of the exosporium of Bacillus cereus. J. Appl. Microbiol. 87: 241-245 https://doi.org/10.1046/j.1365-2672.1999.00878.x
  4. Daugherty, P. S., G. Chen, M. J. Olsen, B. L. Iverson, and G. Georgiou. 1998. Antibody affinity maturation using bacterial surface display. Protein Eng. 11: 825-832 https://doi.org/10.1093/protein/11.9.825
  5. Fedhila, S., N. Patricia, and D. Lereclus. 2002. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J. Bacteriol. 184: 3296-3304 https://doi.org/10.1128/JB.184.12.3296-3304.2002
  6. Georgiou, G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss 3rd. 1997. Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34 https://doi.org/10.1038/nbt0197-29
  7. Grandvalet, C., M. Gominet, and D. Lereclus. 2001. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147: 1805-1813 https://doi.org/10.1099/00221287-147-7-1805
  8. Henriques, A. O. and C. P. Moran Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61: 555-588 https://doi.org/10.1146/annurev.micro.61.080706.093224
  9. Hoa, N. T., L. Baccigalupi, A. Huxham, A. Smertenko, P. H. Van, S. Ammendola, E. Ricca, and A. S. Cutting. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247 https://doi.org/10.1128/AEM.66.12.5241-5247.2000
  10. Isticato, R., G. Cangiano, H. T. Tran, A. Ciabattini, D. Medaglini, M. R. Oggioni, M. De Felice, G. Pozzi, and E. Ricca. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301 https://doi.org/10.1128/JB.183.21.6294-6301.2001
  11. Jung, H. C., J. M. Lebeault, and J. G. Pan. 1998. Surface display of Zymomonas mobilis levansucrase by using the icenucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580 https://doi.org/10.1038/nbt0698-576
  12. Kim, H., M. Hahn, P. Grabowski, D. C. McPherson, M. M. Otte, R. Wang, C. C. Ferguson, P. Eichenberger, and A. Driks. 2006. The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59: 487-502 https://doi.org/10.1111/j.1365-2958.2005.04968.x
  13. Kim, J.-H., C. Roh, C.-W. Lee, D. Kyung, S.-K. Choi, H.-C. Jung, J.-G. Pan, and B.-G. Kim. 2007. Bacterial surface display of $GFP_{UV}$ on Bacillus subtilis spores. J. Microbiol. Biotechnol. 17: 677-680
  14. Kim, J. H., C. S. Lee, and B. G. Kim. 2005. Spore-displayed streptavidin: A live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214 https://doi.org/10.1016/j.bbrc.2005.03.144
  15. Kim, Y. S., H. C. Jung, and J. G. Pan. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl. Environ. Microbiol. 66: 788-793 https://doi.org/10.1128/AEM.66.2.788-793.2000
  16. Kwon, S. J., H.-C. Jung, and J.-G. Pan. 2007. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surface of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251-2256 https://doi.org/10.1128/AEM.01489-06
  17. Lee, J. S., K. S. Shin, J. G. Pan, and C. J. Kim. 2000. Surfacedisplayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18: 645-648 https://doi.org/10.1038/76494
  18. Lee, S. Y., J. H. Choi, and Z. Xu. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52 https://doi.org/10.1016/S0167-7799(02)00006-9
  19. Mauriello, E. M., H. Duc le, R. Isticato, G. Cangiano, H. A. Hong, M. De Felice, E. Ricca, and S. M. Cutting. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177-1187 https://doi.org/10.1016/j.vaccine.2003.09.031
  20. Murata, K. 1993. Use of microbial spores as a biocatalyst. Crit. Rev. Biotechnol. 13: 173-193 https://doi.org/10.3109/07388559309041318
  21. Nicholson, W. L. and P. Setlow. 1990. Sporulation, germination and outgrowth, pp. 391-429. In C. R. Harwood and S. M. Cutting (eds.), Molecular Biological Methods for Bacillus. John Wiley & Sons Ltd., West Sussex, U.K
  22. Nicholson, W. J., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572 https://doi.org/10.1128/MMBR.64.3.548-572.2000
  23. Park, T. J., K. B. Lee, S. J. Lee, J. P. Park, Z. W. Lee, S. K. Choi, et al. 2004. Micropatterns of spores displaying heterologous proteins. J. Am. Chem. Soc. 126: 10512-10513 https://doi.org/10.1021/ja047894y
  24. Ricca, E. and S. M. Cutting. 2003. Emerging applications of bacterial spores in nanobiotechnology. J. Nanobiotechnol. 1: 6 https://doi.org/10.1186/1477-3155-1-6
  25. Sambrook, J. and D. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, NY
  26. Steichen, C., P. Chen, J. F. Kearney, and C. L. Turnbough Jr. 2003. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol. 185:1903-1910 https://doi.org/10.1128/JB.185.6.1903-1910.2003
  27. Sylvestre, P., E. Couture-Tosi, and M. Mock. 2002. A collagenlike surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol. 45: 169-178 https://doi.org/10.1046/j.1365-2958.2000.03000.x
  28. Todd, S. J., A. J. Moir, M. J. Johnson, and A. Moir. 2003. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol. 185: 3373-3378 https://doi.org/10.1128/JB.185.11.3373-3378.2003
  29. Xu, Z. and S. Y. Lee. 1999. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. Environ. Microbiol. 65:5142-5147

Cited by

  1. Quantitative Studies of Carbohydrate-protein Interaction using Functionalized Bacterial Spores in Solution and on Chips vol.16, pp.1, 2011, https://doi.org/10.1007/s12257-010-0063-6
  2. DNA capturing machinery through spore‐displayed proteins vol.53, pp.4, 2009, https://doi.org/10.1111/j.1472-765x.2011.03131.x
  3. Relevant uses of surface proteins – display on self‐organized biological structures vol.5, pp.2, 2009, https://doi.org/10.1111/j.1751-7915.2011.00293.x
  4. Synthesis of Bioactive Microcapsules Using a Microfluidic Device vol.12, pp.8, 2009, https://doi.org/10.3390/s120810136
  5. Spore Surface Display vol.2, pp.5, 2009, https://doi.org/10.1128/microbiolspec.tbs-0011-2012
  6. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation vol.4, pp.2, 2016, https://doi.org/10.1128/microbiolspec.tbs-0018-2013
  7. Improved catalytic and antifungal activities of Bacillus thuringiensis cells with surface display of Chi9602ΔSP vol.122, pp.1, 2009, https://doi.org/10.1111/jam.13333
  8. A Bacillus Spore-Based Display System for Bioremediation of Atrazine vol.86, pp.18, 2009, https://doi.org/10.1128/aem.01230-20
  9. Surface display system for probiotics and its application in aquaculture vol.12, pp.4, 2020, https://doi.org/10.1111/raq.12437