DOI QR코드

DOI QR Code

Characterization of Spermidine Transport System in a Cyanobacterium, Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun (Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Yodsang, Panutda (Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Maenpaa, Pirkko (Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku) ;
  • Incharoensakdi, Aran (Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University)
  • Published : 2009.05.31

Abstract

The transport of spermidine into a cyanobacterium, Synechocystis sp. pec 6803, was characterized by measuring the uptake of $^{14}C$-spermidine. Spermidine transport was shown to be saturable with an apparent affinity constant ($K_m$) value of $67{\mu}M$ and a maximal velocity ($V_{max}$) value of 0.45 nmol/min/mg protein. Spermidine uptake was pH-dependent with the pH optimum being 8.0. The competition experiment showed strong inhibition of spermidine uptake by putrescine and spermine, whereas amino acids were hardly inhibitory. The inhibition kinetics of spermidine transport by putrescine and spermine was found to be noncompetitive with $K_i$ values of 292 and $432{\mu}M$, respectively. The inhibition of spermidine transport by various metabolic inhibitors and ionophores suggests that spermidine uptake is energy-dependent. The diminution of cell growth was observed in cells grown at a high concentration of NaCl. Addition of a low concentration of spermidine at 0.5 mM relieved growth inhibition by salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased spermidine transport with about 30-40% increase at 10 mosmol/kg upshift.

Keywords

References

  1. Badini, L., R. Pistocchi, and N. Bagni. 1994. Polyamine transport in the seaweed Ulva rigida (Chlorophyta). J. Phycol. 30: 599-605 https://doi.org/10.1111/j.0022-3646.1994.00599.x
  2. Basselin, M., G. H. Coombs, and M. P. Barrett. 2000. Putrescine and spermidine transport in Leishmania. Mol. Biochem. Parasitol. 109: 37-46 https://doi.org/10.1016/S0166-6851(00)00234-6
  3. Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenge: Recent development. Plant Sci. 140: 103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Ferjani, A., L. Mustardy, R. Sulpice, K. Marin, I. Suzuki, M. Hagemann, and N. Murata. 2003. Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol. 131: 1628-1637 https://doi.org/10.1104/pp.102.017277
  6. Guarino, L. A. and S. S. Cohen. 1979. Mechanism of toxicity of putrescine in Anacystis nidulans. Proc. Natl. Acad. Sci. U.S.A. 76: 3184-3188 https://doi.org/10.1073/pnas.76.7.3184
  7. Higashi, K., H. Ishigure, R. Demizu, T. Uemura, K. Nishinu, A. Yamaguchi, K. Kashiwagi, and K. Igarashi. 2008. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J. Bacteriol. 190: 872-878 https://doi.org/10.1128/JB.01505-07
  8. Igarashi, K. and K. Kashiwagi. 1999. Polyamine transport in bacteria and yeast. Biochem. J. 344: 633-642 https://doi.org/10.1042/0264-6021:3440633
  9. Igarashi, K., K. Ito, and K. Kashiwagi. 2001. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 152: 271-278 https://doi.org/10.1016/S0923-2508(01)01198-6
  10. Incharoensakdi, A. and A. Karnchanatat. 2003. Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica. Biochim. Biophys. Acta 1621: 102-109 https://doi.org/10.1016/S0304-4165(03)00052-7
  11. Jantaro, S., P. Maenpaa, P. Mulo, and A. Incharoensakdi. 2003. Content and biosynthesis of polyamine in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 228: 129-135 https://doi.org/10.1016/S0378-1097(03)00747-X
  12. Kakinuma, Y., N. Masuda, and K. Igarashi. 1992. Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1107: 126-130 https://doi.org/10.1016/0005-2736(92)90337-L
  13. Kameji, R., S. R. Rannels, A. E. Pegg, and D. E. Rannels. 1989. Spermidine uptake by type II pulmonary epithelial cells in primary culture. Am. J. Physiol. 256: 160-167 https://doi.org/10.1152/ajpcell.1989.256.1.C160
  14. Kashiwagi, K., H. Kobayashi, and K. Igarashi. 1986. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J. Bacteriol. 165: 972-977 https://doi.org/10.1128/jb.165.3.972-977.1986
  15. Kobayashi, M., K. Iseki, H. Saitoh, and K. Miyazaki. 1992. Uptake characteristics of polyamines into rat intestinal brushborder membrane. Biochim. Biophys. Acta 1105: 177-183 https://doi.org/10.1016/0005-2736(92)90177-N
  16. Lessard, M., C. Zhao, S. M. Singh, and R. Poulin. 1995. Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J. Biol. Chem. 270:1685-1694 https://doi.org/10.1074/jbc.270.4.1685
  17. Minchin, R. F., A. Raso, R. L. Martin, and K. F. Ilett. 1991. Evidence for the existence of distinct transporters for the polyamines putrescine and spermidine in B16 melanoma cells. Eur. J. Biochem. 200: 457-462 https://doi.org/10.1111/j.1432-1033.1991.tb16204.x
  18. Moinard, C., L. Cynober, and J. P. D. Bandt. 2005. Polyamines: Metabolism and implications in human diseases. Clin. Nutr. 24: 184-197 https://doi.org/10.1016/j.clnu.2004.11.001
  19. Munro, G. F., C. A. Bell, and M. Lederman. 1974. Multiple transport components for putrescine in Escherichia coli. J. Bacteriol. 118: 952-963
  20. Park, H. and A. T. Bakalinsky. 2004. Evidence for sulfite proton symport in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 967-971
  21. Parys, J. B., H. De Smedt, L. Van Den Bosch, J. Geuns, and R. Borghgraef. 1990. Regulation of the $Na^{+}$-dependent and the $Na^{+}$-independent polyamine transporters in renal epithelial cells (LLC-PK1). J. Cell. Physiol. 144: 365-375 https://doi.org/10.1002/jcp.1041440302
  22. Raksajit, W., P. Maenpaa, and A. Incharoensakdi. 2006. Putrescine transport in a cyanobacterium Synechocystis sp. PCC 6803. J. Biochem. Mol. Biol. 39: 394-399 https://doi.org/10.5483/BMBRep.2006.39.4.394
  23. Ramakrishna, S., L. Guarino, and S. S. Cohen. 1978. Polyamines of Anacystis nidulans and metabolism of exogenous spermidine and spermine. J. Bacteriol. 134: 744-750
  24. Reguera, R. M., B. L. Tekwani, and R. Balana-Fouce. 2005. Polyamine transport in parasites: A potential target for new antiparasitic drug development. Comp. Biochem. Physiol. 140:151-164 https://doi.org/10.1016/j.cbpb.2004.11.013
  25. Rinehart, C. A. and K. Y. Chen. 1984. Characterization of polyamine transport system in mouse neuroblastoma cells. Effects of sodium and system A amino acids. J. Biol. Chem. 259: 4750-4756
  26. Rippka, R., J. Deruelles, J. Waterbury, M. Herdman, and R. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61 https://doi.org/10.1099/00221287-111-1-1
  27. Romero-Calderon, R. and D. E. Krantz. 2006. Transport of polyamines in Drosophila S2 cells: Kinetics, pharmacology and dependence on the plasma membrane proton gradient. Biochem. J. 393: 583-589 https://doi.org/10.1042/BJ20050981
  28. Seiler, N. and F. Raul. 2005. Polyamines and apotosis. J. cell. Mol. Med. 9: 623-642 https://doi.org/10.1111/j.1582-4934.2005.tb00493.x
  29. Seiler, N., J. G. Delcros, and J. P. Moulinoux. 1996. Polyamine transport in mammalian cells: An update. Int. J. Biochem. Cell. Biol. 28: 843-861 https://doi.org/10.1016/1357-2725(96)00021-0
  30. Tabor, C. W. and H. Tabor. 1985. Polyamines in microorganisms. Microbiol. Rev. 49: 81-99
  31. Theiss, C., P. Bohley, H. Bisswanger, and J. Voigt. 2004. Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. J. Plant Physiol. 161: 3-14 https://doi.org/10.1078/0176-1617-00987
  32. Thomas, T. and T. J. Thomas. 2001. Polyamine in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 58: 244-258 https://doi.org/10.1007/PL00000852
  33. Urdiales, J. L., M. A. Medina, and F. Sanchez-Jimenez. 2001. Polyamine metabolism revisited. Eur. J. Gastroenterol. Hepatol. 13: 1015-1019 https://doi.org/10.1097/00042737-200109000-00003
  34. Van Den Bosch, L., H. De Smedt, L. Missiaen, J. B. Parys, and R. Borghgraef. 1990. Transport systems for polyamines in the established renal cell line LLC-PK1 polarized expression of an Na+-dependent transporter. Biochem. J. 265: 609-612 https://doi.org/10.1042/bj2650609
  35. Wallace, H. M., A. V. Fraser, and A. Hughes. 2003. A perspective of polyamine metabolism. Biochem. J. 376: 1-14 https://doi.org/10.1042/BJ20031327
  36. Williams, K. 1997. Interactions of polyamines with ion channels. Biochem. J. 325: 289-297 https://doi.org/10.1042/bj3250289
  37. Wyatt, I., A. R. Soames, M. F. Clay, and L. L. Smith. 1988. The accumulation and localization of putrescine, spermidine, spermine and paraquat in the rat lung. In vitro and in vivo studies. Biochem. Pharmacol. 37: 1909-1918 https://doi.org/10.1016/0006-2952(88)90536-9

Cited by

  1. Antitumor conjugates with polyamine vectors and their molecular mechanisms vol.7, pp.9, 2009, https://doi.org/10.1517/17425247.2010.504205
  2. Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803 vol.192, pp.10, 2009, https://doi.org/10.1007/s00203-010-0607-3
  3. Recombinant polyamine-binding protein of Synechocystis sp. PCC 6803 specifically binds to and is induced by polyamines vol.76, pp.6, 2009, https://doi.org/10.1134/s0006297911060137
  4. Exogenous Spermidine Alleviates UV-Induced Growth Inhibition of Synechocystis sp. PCC 6803 via Reduction of Hydrogen Peroxide and Malonaldehyde Levels vol.173, pp.5, 2009, https://doi.org/10.1007/s12010-014-0887-1
  5. Involvement of Polyamine Binding Protein D (PotD) of Synechocystis sp. PCC 6803 in Spermidine Uptake and Excretion vol.69, pp.4, 2009, https://doi.org/10.1007/s00284-014-0605-9
  6. GABA Accumulation in Response to Different Nitrogenous Compounds in Unicellular Cyanobacterium Synechocystis sp. PCC 6803 vol.70, pp.1, 2009, https://doi.org/10.1007/s00284-014-0687-4
  7. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135565
  8. External spermine prevents UVA-induced damage of Synechocystis sp. PCC 6803 via increased catalase activity and decreased H2O2 and malonaldehyde levels vol.68, pp.10, 2009, https://doi.org/10.1007/s13213-018-1376-5
  9. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock vol.9, pp.12, 2019, https://doi.org/10.3390/metabo9120297